Advertisement

Geometriae Dedicata

, Volume 160, Issue 1, pp 261–285 | Cite as

Einstein metrics on compact Lie groups which are not naturally reductive

  • Andreas ArvanitoyeorgosEmail author
  • Kunihiko Mori
  • Yusuke Sakane
Original Paper

Abstract

The study of left-invariant Einstein metrics on compact Lie groups which are naturally reductive was initiated by D’Atri and Ziller (Mem Am Math Soc 18, (215) 1979). In 1996 the second author obtained non-naturally reductive Einstein metrics on the Lie group SU(n) for n ≥  6, by using a method of Riemannian submersions. In the present work we prove existence of non-naturally reductive Einstein metrics on the compact simple Lie groups SO(n) (n ≥  11), Sp(n) (n ≥  3), E 6, E 7, and E 8.

Keywords

Einstein metrics Homogeneous spaces Naturally reductive metrics Kähler C-spaces 

Mathematics Subject Classification (2000)

53C25 53C30 17B20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arvanitoyeorgos A., Chrysikos I.: Motion of charged particles and homogeneous geodesics in Kähler C-spaces with two isotropy summands. Tokyo J. Math. 32(2), 487–500 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Besse A.L.: Einstein Manifolds. Springer, Berlin (1987)zbMATHGoogle Scholar
  3. 3.
    Böhm C.: Homogeneous Einstein metrics and simplicial complexes. J. Differ. Geom. 67, 79–165 (2004)zbMATHGoogle Scholar
  4. 4.
    Böhm C., Kerr M.M.: Low-dimensional homogeneous Einstein manifolds. Trans. Am. Math. Soc. 358(4), 1455–1468 (2006)CrossRefzbMATHGoogle Scholar
  5. 5.
    Böhm C., Wang M., Ziller W.: A variational approach for homogeneous Einstein metrics. GAFA 14, 681–733 (2004)zbMATHGoogle Scholar
  6. 6.
    Borel A., Hirzebruch F.: Characteristic classes and homogeneous spaces I. Am. J. Math. 80, 458–538 (1958)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Burstall F.E., Rawnsley J.H.: Twistor Theory for Riemannian Symmetric Spaces. Lecture Notes in Mathematics, vol. 1424. Springer, Heidelberg (1990)Google Scholar
  8. 8.
    Dickinson W., Kerr M.M.: The geometry of compact homogeneous spaces with two isotropy summands. Ann. Global Anal. Geom. 34(4), 329–350 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    D’Atri, J.E., Ziller, W.: Naturally reductive metrics and Einstein metrics on compact Lie groups. Mem. Am. Math. Soc. 18 (No. 215), Rhode Island (1979)Google Scholar
  10. 10.
    Jensen G.: The scalar curvature of left-invariant Riemannian metrics. Indiana Univ. Math. J. 20, 1125–1144 (1971)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Kimura M.: Homogeneous Einstein metrics on certain Kähler C-spaces. Recent Top. Differ. Anal. Geom. Adv. Stud. Pure Math. 18-I, 303–320 (1990)Google Scholar
  12. 12.
    Mori, K.: Left Invariant Einstein Metrics on SU(N) that are Not Naturally Reductive. Master Thesis (in Japanese) Osaka University 1994, English translation Osaka University RPM 96—10 (preprint series) (1996)Google Scholar
  13. 13.
    Nikonorov Y.G., Rodionov E.D., Slavskii V.V.: Geometry of homogeneous Riemannian manifolds. J. Math. Sci. 146(6), 6313–6390 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Wang M., Ziller W.: Existence and non-existence of homogeneous Einstein metrics. Invent. Math. 84, 177–194 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Wolf J.A.: Spaces of Constant Curvature. Publish or Perish, Wilmington (1984)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Andreas Arvanitoyeorgos
    • 1
    Email author
  • Kunihiko Mori
    • 2
  • Yusuke Sakane
    • 3
  1. 1.Department of MathematicsUniversity of PatrasRionGreece
  2. 2.Saibi-Heisei Junior & Senior High SchoolMatsuyama, EhimeJapan
  3. 3.Department of Pure and Applied Mathematics, Graduate School of Information Science and TechnologyOsaka UniversityToyonaka, OsakaJapan

Personalised recommendations