Geometriae Dedicata

, Volume 157, Issue 1, pp 367–396 | Cite as

Nonnegatively curved fixed point homogeneous manifolds in low dimensions

Original Paper


Let G be a compact Lie group acting isometrically on a compact Riemannian manifold M with nonempty fixed point set MG. We say that M is fixed-point homogeneous if G acts transitively on a normal sphere to some component of MG. Fixed-point homogeneous manifolds with positive sectional curvature have been completely classified. We classify nonnegatively curved fixed-point homogeneous Riemannian manifolds in dimensions 3 and 4 and determine which nonnegatively curved simply-connected 4-manifolds admit a smooth fixed-point homogeneous circle action with a given orbit space structure.


Fixed Point Homogeneous Nonnegative Curvature 

Mathematics Subject Classification (2000)

53C20 57S25 51M25 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Borel A.: Some remarks about transformation groups on spheres and tori. Bull. Am. Math. Soc. 55, 580–587 (1949)MathSciNetMATHCrossRefGoogle Scholar
  2. Borel A.: Le plan projectif des octaves et les spheres comme espaces homogenes. C. R. Acad. Sci. Paris 230, 1378–1381 (1950)MathSciNetMATHGoogle Scholar
  3. Burago, D., Yuri, B., Ivanov, S.: A Course in Metric Geometry, Graduate Studies in Mathematics. Vol. 33, American Mathematical Society, USA (2001)Google Scholar
  4. Cao, J., Ge, J.: A simple proof of Perelmans collapsing theorem for 3-manifolds. J. Geom. Anal. (2010). doi:10.1007/s12220-010-9169-5
  5. Cheeger J., Gromoll D.: The splitting theorem for manifolds ofnonnegative Ricci curvature. J. Differ. Geom. 33, 119–128 (1971)MathSciNetGoogle Scholar
  6. Cheeger J., Gromoll D.: On the structure of complete manifolds of nonnegative curvature. Ann. Math. 96(2)  413–443 (1972)MathSciNetCrossRefGoogle Scholar
  7. Fintushel R.: Circle actions on simply connected 4-manifolds. Trans. Am. Math. Soc. 230, 147–171 (1977)MathSciNetMATHGoogle Scholar
  8. Fintushel R.: Classification of circle actions on 4-manifolds. Trans. Am. Math. Soc. 242, 377–390 (1978)MathSciNetMATHGoogle Scholar
  9. Fintushel, R., Stern, R.J., Sunukjian, R.: Exotic group actions on simply connected smooth 4-manifolds, arXiv:0902.0963v1 [math.GT] (2009)Google Scholar
  10. Gromov M.: Curvature, diameter and Betti numbers. Comment. Math. Helv. 56(2) 179–195 (1981)MathSciNetMATHCrossRefGoogle Scholar
  11. Grove, K.: Geometry of, and via, symmetries. In: Conformal, Riemannian and Lagrangian geometry (Knoxville, TN, 2000), Univ. Lecture Ser., vol. 27, pp. 31–53. Am. Math. Soc., Providence, RI (2002)Google Scholar
  12. Grove, K.: Developments around positive sectional curvature. arXiv:0902.4419v1 [math.DG] (2009)Google Scholar
  13. Grove, K., Searle, C.: Positively curved manifolds with maximal symmetry-rank. J. Pure Appl. Algebra 91(1–3), 137–142 (1994)MathSciNetMATHCrossRefGoogle Scholar
  14. Grove K., Searle C.: Differential topological restrictions curvature and symmetry. J. Differ. Geom. 47(3), 530–559 (1997)MathSciNetMATHGoogle Scholar
  15. Grove, K., Wilking, B.: A knot characterization and 1-connected nonnegatively curved 4-manifolds with circle symmetry. Preprint, (2011)Google Scholar
  16. Grove K., Wilking B., Ziller W.: Positively curved cohomogeneity one manifolds and 3-Sasakian geometry. J. Differ. Geom. 78(1), 33–111 (2008)MathSciNetMATHGoogle Scholar
  17. Grove K., Ziller W.: Curvature and symmetry of Milnor spheres. Ann. Math. 152(1), 331–367 (2000)MathSciNetMATHCrossRefGoogle Scholar
  18. Hamilton R.S.: Four-manifolds with positive curvature operator. J. Differ. Geom. 24(2), 153–179 (1986)MathSciNetMATHGoogle Scholar
  19. Hillman J.A.: The algebraic characterization of geometric 4-manifolds, London Mathematical Society Lecture Note Series, vol. 198. Cambridge University Press, Cambridge (1994)CrossRefGoogle Scholar
  20. Hoelscher C.A.: Classification of cohomogeneity one manifolds in low dimensions. Pacific J. Math. 246(1), 129–185 (2010)MathSciNetMATHCrossRefGoogle Scholar
  21. Hsiang W.Y., Kleiner B: On the topology of positively curved 4-manifolds with symmetry. J. Differ. Geom. 29(3), 615–621 (1989)MathSciNetMATHGoogle Scholar
  22. Kleiner, B.: Riemannian four-manifolds with nonnegative curvature and continuous symmetry, Ph.D. thesis, University of California, Berkeley, 1990Google Scholar
  23. Kleiner, B., Lott, J.: Notes on Perelman’s papers Preprint (2006) arXiv:math/0605667v2 [math.DG].Google Scholar
  24. Kobayashi, S.: Transformation groups in differential geometry. Classics in Mathematics, Springer, Berlin. Reprint of the 1972 edition (1995)Google Scholar
  25. Montgomery D., Samelson H.: Transformation groups on spheres. Ann. Math. 44, 454–470 (1943)MathSciNetMATHCrossRefGoogle Scholar
  26. Morgan J., Tian G.: Ricci Flow and the Poincaré Conjecture. Clay Mathematics Monographs, vol. 3. Am. Math. Soc., Providence, RI (2007)Google Scholar
  27. Orlik P.: Seifert Manifolds. Lecture Notes in Mathemaics, vol. 291. Springer, New York (1972)Google Scholar
  28. Orlik, P., Raymond, F.: Actions of SO(2) on 3-manifolds. Proceedings of Conference on Transformation Groups, New Orleans, LA (1967), pp. 297–318. Springer, New York (1968)Google Scholar
  29. Orlik P., Raymond F.: Actions of the torus on 4-manifolds. I. Trans. Am. Math. Soc. 152, 531–559 (1970)MathSciNetMATHGoogle Scholar
  30. Pao P.S.: Nonlinear circle actions on the 4-sphere and twisting spun knots. Topology 17(3), 291–296 (1978)MathSciNetMATHCrossRefGoogle Scholar
  31. Perelman, G.: Alexandrov spaces with curvature bounded below, ii, PreprintGoogle Scholar
  32. Perelman, G.: The entropy formula for the Ricci flow and its geometric applications. Preprint (2002), arXiv:math/0211159v1 [math.DG]Google Scholar
  33. Perelman, G.: Ricci flow with surgery on three-manifolds. Preprint (2003), arXiv:math/0303109v1 [math.DG]Google Scholar
  34. Poncet J.: Groupes de lie compacts de transformations de l’espaces euclidean et les spheres comme espaces homogenes. Comment. Math. Helv. 33, 109–120 (1959)MathSciNetMATHCrossRefGoogle Scholar
  35. Raymond F.: Classification of the actions of the circle on 3-manifolds. Trans. Am. Math. Soc. 131, 51–78 (1968)MathSciNetMATHGoogle Scholar
  36. Searle C., Yang D.: On the topology of non-negatively curved simply connected 4-manifolds with continuous symmetry. Duke Math. J. 74(2), 547–556 (1994)MathSciNetMATHCrossRefGoogle Scholar
  37. Seifert H.: Topologie Dreidimensionaler Gefaserter Räume. Acta Math. 60(1), 147–238 (1933)MathSciNetCrossRefGoogle Scholar
  38. Shioya T., Yamaguchi T.: Collapsing three-manifolds under a lower curvature bound. J. Differ. Geom. 56(1), 1–66 (2000)MathSciNetMATHGoogle Scholar
  39. Verdiani L.: Cohomogeneity one manifolds of even dimension with strictly positive sectional curvature. J. Differ. Geom. 68(1), 31–72 (2004)MathSciNetMATHGoogle Scholar
  40. Wilking B.: Positively curved manifolds with symmetry. Ann. Math. 163(2), 607–668 (2006)MathSciNetMATHCrossRefGoogle Scholar
  41. Wilking, B.: Nonnegatively and positively curved manifolds. Surveys in differential geometry. Vol. XI, Surv. Differ. Geom., vol. 11, Int. Press, pp. 25–62. Somerville, MA (2007)Google Scholar
  42. Ziller, W.: Examples of Riemannian manifolds with non-negative sectional curvature. Surveys in differential geometry. Vol. XI, Surv. Differ. Geom., vol. 11, Int. Press, pp. 63–102. Somerville, MA (2007)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of Maryland at College ParkCollege ParkUSA
  2. 2.Mathematisches InstitutWWU MünsterMünsterGermany

Personalised recommendations