Geometriae Dedicata

, Volume 155, Issue 1, pp 141–149

An infinite family of convex Brunnian links in \({\mathbb{R}^n}\)

  • Bob Davis
  • Hugh N. Howards
  • Jonathan Newman
  • Jason Parsley
Original Paper
  • 56 Downloads

Abstract

This paper proves that convex Brunnian links exist for every dimension n ≥ 3 by constructing explicit examples. These examples are three-component links which are higher-dimensional generalizations of the Borromean rings.

Keywords

Brunnian links High-dimensional knot theory Borromean rings 

Mathematics Subject Classification (2000)

57Q45 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brunn, H.: Über verkettung. In: Math. Phys. Klasse, volume 22 of Sitzungber, pp. 77–99. Bayerische Akad. Wiss. (1892)Google Scholar
  2. 2.
    Davis, R.M.: Brunnian links of five components. Master’s thesis, Wake Forest University, (2005)Google Scholar
  3. 3.
    Debrunner H.: Links of Brunnian type. Duke Math. J. 28, 17–23 (1961)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Freedman M.H., Skora R.: Strange actions of groups on spheres. J. Differ. Geom. 25(1), 75–98 (1987)MATHMathSciNetGoogle Scholar
  5. 5.
    Hatcher A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)MATHGoogle Scholar
  6. 6.
    Howards H.N.: Convex Brunnian links. J. Knot Theor. Ramif. 15(9), 1131–1140 (2006)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Howards H.N.: Brunnian spheres. Am. Math. Monthly 115(2), 114–124 (2008)MATHMathSciNetGoogle Scholar
  8. 8.
    Lindström B., Zetterström H.-O.: Borromean circles are impossible. Amer. Math. Monthly 98(4), 340–341 (1991)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Penney D.E.: Generalized Brunnian links. Duke Math. J. 36, 31–32 (1969)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Yanagawa T.: Brunnian systems of 2-spheres in 4-space. Osaka J. Math. 1, 127–132 (1964)MATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Bob Davis
    • 1
  • Hugh N. Howards
    • 1
  • Jonathan Newman
    • 1
  • Jason Parsley
    • 1
  1. 1.Department of MathematicsWake Forest UniversityWinston SalemUSA

Personalised recommendations