Geometriae Dedicata

, Volume 153, Issue 1, pp 131–137 | Cite as

The Monodromy Conjecture for hyperplane arrangements

  • Nero Budur
  • Mircea Mustaţă
  • Zach Teitler
Original Paper


The Monodromy Conjecture asserts that if c is a pole of the local topological zeta function of a hypersurface, then exp(2πic) is an eigenvalue of the monodromy on the cohomology of the Milnor fiber. A stronger version of the conjecture asserts that every such c is a root of the Bernstein-Sato polynomial of the hypersurface. In this note we prove the weak version of the conjecture for hyperplane arrangements. Furthermore, we reduce the strong version to the following conjecture: −n/d is always a root of the Bernstein-Sato polynomial of an indecomposable essential central hyperplane arrangement of d hyperplanes in C n .


Monodromy Conjecture Hyperplane arrangements 

Mathematics Subject Classification (2000)

32S40 32S22 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Budur N., Saito M.: Jumping coefficients and spectrum of a hyperplane arrangement. Math. Ann. 347(3), 545–579 (2010)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Cohen D., Suciu A.: On Milnor fibrations of arrangements. J. London Math. Soc. 51(2), 105–119 (1995)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Dimca A.: Singularities and Topology of Hypersurfaces. Universitext, Springer, New York (1992)zbMATHGoogle Scholar
  4. 4.
    Dimca A.: Sheaves in Topology. Universitext, Springer, Berlin (2004)zbMATHCrossRefGoogle Scholar
  5. 5.
    De Concini C., Procesi C.: Wonderful models of subspace arrangements. (Selecta Math. (N.S.) 1(3), 459–494 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Denef J.: Report on Igusa’s local zeta function. Séminaire Bourbaki, Vol. 1990/91. Astérisque No. 201–203 (1991), Exp. No. 741, 359–386 (1992)Google Scholar
  7. 7.
    Denef J., Loeser F.: Caractéristiques d’Euler-Poincaré, fonctions zéta locales et modifications analytiques. J. Am. Math. Soc. 5(4), 705–720 (1992)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Ein L., Lazarsfeld R., Smith K.E., Varolin D.: Jumping coefficients of multiplier ideals. Duke Math. J. 123, 469–506 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Fulton W.: Introduction to Toric Varieties, Annals of Mathematics Studies 131. Princeton University Press, Princeton, NJ (1993)Google Scholar
  10. 10.
    Igusa, J.-i.: An introduction to the theory of local zeta functions, AMS/IP Studies in Advanced Mathematics. 14. American Mathematical Society, Providence, RI; International Press, Cambridge, MA (2000)Google Scholar
  11. 11.
    Kashiwara, M.: B-functions and holonomic systems. Rationality of roots of B-functions. Invent. Math. 38(1), 33–53 (1976/1977)Google Scholar
  12. 12.
    Malgrange, B.:Polynôme de Bernstein-Sato et cohomologie évanescente, Analysis and topology on singular spaces, II, III (Luminy, 1981), Astérisque 101–102 (1983), 243–267Google Scholar
  13. 13.
    Mustaţă M.: Multiplier ideals of hyperplane arrangements. Trans. Am. Math. Soc. 358(11), 5015–5023 (2006)zbMATHCrossRefGoogle Scholar
  14. 14.
    Saito, M.: Bernstein-Sato polynomials of hyperplane arrangements. math.AG/0602527Google Scholar
  15. 15.
    Schechtman V., Terao H., Varchenko A.: Local systems over complements of hyperplanes and the Kac-Kazhdan conditions for singular vectors. J. Pure Appl. Algebra 100, 93–102 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Teitler Z.: A note on Mustaţă’s computation of multiplier ideals of hyperplane arrangements. Proc. Am. Math. Soc. 136, 1575–1579 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Walther U.: Bernstein-Sato polynomial versus cohomology of the Milnor fiber for generic hyperplane arrangements. Compos. Math. 141, 121–145 (2005)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of Notre DameNotre DameUSA
  2. 2.Department of MathematicsUniversity of MichiganAnn ArborUSA
  3. 3.Department of MathematicsBoise State UniversityBoiseUSA

Personalised recommendations