Geometriae Dedicata

, Volume 151, Issue 1, pp 221–231 | Cite as

Incompressible surfaces and spunnormal form

Original Paper


Suppose M is a cusped finite-volume hyperbolic 3-manifold and \({\mathcal{T}}\) is an ideal triangulation of M with essential edges. We show that any incompressible surface S in M that is not a virtual fiber can be isotoped into spunnormal form in \({\mathcal{T}}\). The proof is based directly on ideas of W. Thurston.


Hyperbolic 3-manifold Ideal triangulation Spunnormal surface 

Mathematics Subject Classification (2000)

57M99 57Q37 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Boyer S., Culler M., Shalen Peter B., Zhang X.: Characteristic subsurfaces and Dehn filling. Trans. Amer. Math. Soc. 357(6), 2389–2444 (2005) (electronic)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Choi Y.-E.: Neumann and Zagier’s symplectic relations. Expo. Math. 24, 39–51 (2006)MathSciNetMATHGoogle Scholar
  3. 3.
    Cooper D., Long D.D.: Virtually Haken Dehn filling. J. Differ. Geom. 52, 173–187 (1999)MathSciNetMATHGoogle Scholar
  4. 4.
    Cooper D., Tillmann S.: The Thurston norm via normal surfaces. Pacific. J. Math. 239(1), (2009)Google Scholar
  5. 5.
    Culler, M., Dunfield, N.: SnapPy (A user interface for Snapea).
  6. 6.
    Culler M., Dunfield N.: t3m.
  7. 7.
    Epstein D.B.A.: Curves on 2-manifolds and isotopies. Acta. Math. 115, 83–107 (1966)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Epstein D.B.A., Penner R.C.: Euclidean decompositions of noncompact hyperbolic manifolds. J. Differ. Geom. 27(1), 67–80 (1988)MathSciNetMATHGoogle Scholar
  9. 9.
    Kang E.: Normal surfaces in the figure-8 knot complement. J. Knot Theory Ramifications 12(2), 269–279 (2003)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Kang, E., Rubinstein, J.H.: Ideal triangulations of 3-manifolds I: spun normal surface theory. In: Proceedings of the Casson Fest, number 7 in Geom. Topol. Monogr., pp. 235–265. (2004)Google Scholar
  11. 11.
    Li T.: Immersed essential surfaces in hyperbolic 3-manifolds. Comm. Anal. Geom. 10(2), 275–290 (2002)MathSciNetMATHGoogle Scholar
  12. 12.
    Petronio C., Porti J.: Negatively oriented ideal triangulations and a proof of Thurston’s hyperbolic Dehn filling theorem. Expo. Math. 18(1), 1–35 (2000)MathSciNetMATHGoogle Scholar
  13. 13.
    Thurston W.P.: Three-dimensional manifolds, Kleinian groups and hyperbolic geometry. Bull. Amer. Math. Soc. 6(3), 357–381 (1982)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Tillmann S.: Normal surfaces in topologically finite 3-manifolds. L’Enseignement Mathmatique 54, 329–380 (2008)MathSciNetMATHGoogle Scholar
  15. 15.

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Tufts UniversityMedfordUSA

Personalised recommendations