Geometriae Dedicata

, Volume 148, Issue 1, pp 15–33 | Cite as

The smooth structure set of Sp × Sq

Original Paper
  • 136 Downloads

Abstract

We calculate \({\mathcal{S}^{{\it Diff}}(S^p \times S^q)}\), the smooth structure set of Sp × Sq, for p, q ≥ 2 and p + q ≥ 5. As a consequence we show that in general \({\mathcal{S}^{Diff}(S^{4j-1}\times S^{4k})}\) cannot admit a group structure such that the smooth surgery exact sequence is a long exact sequence of groups. We also show that the image of the forgetful map \({\mathcal{S}^{Diff}(S^{4j}\times S^{4k}) \rightarrow \mathcal{S}^{Top}(S^{4j}\times S^{4k})}\) is not in general a subgroup of the topological structure set.

Keywords

Smooth structure set Surgery exact sequence Product of spheres Diffeomorphism classification 

Mathematics Subject Classification (2000)

57R55 57R65 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Browder, W.: Surgery on simply-connected manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 65. Springer-Verlag, New York, Heidelberg (1972)Google Scholar
  2. 2.
    Brumfiel G.: Homotopy equivalences of almost smooth manifolds. Comm. Math. Helv. 46, 381–407 (1971)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Crowley, D.: Siebenmann’s periodicity mistake. In: Mathematisches Forschungsinstitut Oberwolfach Report No. 36 (2006)Google Scholar
  4. 4.
    Crowley, D.: On (n−1)-Connected 2n-Manifolds After Wall. Universität Bonn (2010, in preparation)Google Scholar
  5. 5.
    Crowley D., Escher C.: The classification of S 3-bundles over S 4. Differ. Geom. Appl. 18(3), 363–380 (2003)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    De Sapio R.: Differential structures on a product of spheres. Comm. Math. Helv. 44, 61–69 (1969)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Eells J., Kuiper N.: An invariant for certain smooth manifolds. Ann. Math. 60, 93–110 (1962)MathSciNetGoogle Scholar
  8. 8.
    Freedman M., Quinn F.: The Topology of 4-Manifolds. Princeton University Press, Princeton (1990)Google Scholar
  9. 9.
    Hirsch, M.W., Mazur, B.: Smoothings of piecewise linear manifolds. Ann. Math. Stud. 80, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo (1974)Google Scholar
  10. 10.
    Kervaire M.A., Milnor J.W.: Groups of homotopy spheres I. Ann. Math. 77, 504–537 (1963)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Kirby, R.C., Siebenmann, L.C.: Foundational essays on topological manifolds, smoothings, and triangulations. Ann. of Math. Stud. 88, Princeton University Press (1977)Google Scholar
  12. 12.
    Kreck, M., Lück, W.: Topological rigidity for non-aspherical manifolds. J. Pure App. Math. Quart. 5(3), 873–914. http://de.arxiv.org/abs/math/0509238 (to appear)
  13. 13.
    Kro, T.A.: Geometrically defined group structures in 3-dimensional surgery. Cand. Scient. Thesis, Mathematics, Oslo. http://www.maths.ed.ac.uk/~aar/papers/kro.pdf (2000)
  14. 14.
    Lück, W.: A basic introduction to surgery theory, ICTP Lecture Notes Series 9, Band 1, of the school “High-dimensional manifold theory” in Trieste, May/June 2001, Abdus Salam International Centre for Theoretical Physics, Trieste (2002)Google Scholar
  15. 15.
    Levine, J.P.: Lectures on groups of homotopy spheres, Algebraic and geometric topology (New Brunswick, NJ, 1983), 62–95, Lecture Notes in Math., 1126, Springer, Berlin (1985)Google Scholar
  16. 16.
    Madsen, I., Milgram, J.: The classifying spaces for surgery and cobordism of manifolds. Ann. Math. Stud. 92, Princeton University Press (1979)Google Scholar
  17. 17.
    Madsen I., Taylor L., Williams B.: Tangential homotopy equivalences. Comm. Math. Helv. 55, 445–484 (1980)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Nicas, A.J.: Induction theorems for groups of homotopy manifold structures. Mem. Amer. Math. Soc. 39(267) (1982)Google Scholar
  19. 19.
    Quinn, F.: A geometric formulation of surgery, Topology of manifolds. In: Proceedings 1969 Georgia Topology Conference, pp. 500–511. Markham Press (1970)Google Scholar
  20. 20.
    Ranicki, A.A.: The algebraic theory of surgery I & II. In: Proceedings of the London Mathematical Society, vol. 40, pp. 87–192, 193–283 (1980)Google Scholar
  21. 21.
    Ranicki A.A.: Algebraic L-theory and topological manifolds, Cambridge Tracts in Mathematics, vol. 102. Cambridge University Press, Cambridge (1992)Google Scholar
  22. 22.
    Ranicki A.A.: Algebraic and geometric surgery, Oxford Mathematical Monographs. Oxford University Press, Oxford (2002)CrossRefGoogle Scholar
  23. 23.
    Ranicki A.A.: A composition formula for manifold structures. J. Pure App. Math. Quart. 5(2), 701–727 (2009)MATHMathSciNetGoogle Scholar
  24. 24.
    Rochlin, V.A.: Quatre articles de V. A. Rohlin, IV. In: Guillou, L., Marin, A. (eds.) A la Recherche de la Topologie Purdue (1986)Google Scholar
  25. 25.
    Schultz R.E.: Smooth structures on S P × S q. Ann. Math. 90, 187–198 (1969)CrossRefMathSciNetGoogle Scholar
  26. 26.
    Shaneson J.L.: Wall’s surgery obstruction groups for \({G \times {\mathbb Z}}\). Ann. Math. 90, 296–334 (1969)CrossRefMathSciNetGoogle Scholar
  27. 27.
    Siebenmann L.C.: Periodicity and Topological Surgery, pp. 277–283 (in Kirby and Siebenmann (1977))Google Scholar
  28. 28.
    Smale S.: Generalized poincaré’s conjecture in dimensions greater than 4. Ann. Math. 74, 391–406 (1961)CrossRefMathSciNetGoogle Scholar
  29. 29.
    Wall C.T.C.: Classification of (n−1)-connected 2n-manifolds. Ann. Math. 75, 163–189 (1962)CrossRefGoogle Scholar
  30. 30.
    Wall, C.T.C.: Surgery on compact manifolds, Second edition. Edited and with a foreword by A. A. Ranicki. Mathematical Surveys and Monographs, 69. American Mathematical Society, Providence, RI (1999)Google Scholar
  31. 31.
    Weinberger S.: On smooth surgery. Comm. Pure Appl. Math. 43(5), 695–696 (1990)MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Weinberger, S.: On Smooth Surgery II, preprint, the University of Chicago (2000)Google Scholar
  33. 33.
    Wilkens, D.L.: On the inertia group of certain manifolds. J. Lond. Math. Soc. 9(2), 537–548 (1974/5)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.School of Mathematical SciencesUniversity of AdelaideAdelaideAustralia

Personalised recommendations