Geometriae Dedicata

, Volume 146, Issue 1, pp 43–66 | Cite as

Enriques diagrams and log-canonical thresholds of curves on smooth surfaces

Original Paper

Abstract

It is shown that, on a smooth surface, the log-canonical threshold of a curve with an isolated singularity is computed by the term ideal of the curve in a suitable system of local parameters at the singularity. The proof uses the Enriques diagram of the singularity and shows that the log-canonical threshold depends only on a non-degenerate path of that diagram.

Keywords

Log-canonical threshold Enriques diagram Newton polygon 

Mathematics Subject Classification (2000)

14B05 14H20 14H50 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnold V.I., Guseĭn-Zade S.M., Varchenko A.N.: Singularities of Differentiable Maps. Vol. II: Monodromy and Asymptotic of Integrals. Birkhäuser Boston Inc., Boston (1988)Google Scholar
  2. 2.
    Campillo A., Gonzalez-Sprinberg G., Lejeune-Jalabert M.: Clusters of infinitely near points. Math. Ann. 306(1), 169–194 (1996)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Casas-Alvero E.: Infinitely near imposed singularities and singularities of polar curves. Math. Ann. 287, 429–454 (1990)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Enriques F., Chisini O.: Lezioni Sulla Teoria Geometrica Delle Equazioni e Delle Funzioni Algebriche. N. Zanichelli, Bologna (1915)MATHGoogle Scholar
  5. 5.
    Evain L.: La fonction de Hilbert de la réunion de 4h gros points génériques de \({\mathbb P^2}\) de même multiplicité. J. Algebraic Geom. 8, 787–796 (1999)MATHMathSciNetGoogle Scholar
  6. 6.
    Favre Ch., Jonsson M.: Valuations and multiplier ideals. J. Amer. Math. Soc. 18(3), 655–684 (2005)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Howald J.A.: Multiplier ideals of monomial ideals. Trans. Amer. Math. Soc. 353, 2665–2671 (2001)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Howald, J.A.: Multiplier ideals of sufficiently general polynomials (preprint) (2003)Google Scholar
  9. 9.
    Kuwata T.: On log canonical thresholds of reducible plane curves. Amer. J. Math. 121(4), 701–721 (1999)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Igusa, J.: Critical points of smooth functions and thier normal forms. In: Complex and Algebraic Geometry. Iwanami Shoten, pp. 357–368 (1977)Google Scholar
  11. 11.
    Lazarsfeld R.: Positivity in Algebraic Geometry. A Series of Modern Surveys in Mathematics. Springer, Berlin (2004)Google Scholar
  12. 12.
    Naie D.: Irregularity of cyclic multiple planes after Zariski. Enseign. Math. 53(3–4), 265–305 (2007)MATHMathSciNetGoogle Scholar
  13. 13.
    Semple J.G., Kneebone G.T.: Algebraic Curves. Oxford University Press, Oxford (1959)MATHGoogle Scholar
  14. 14.
    Smith K.E., Thompson H.M.: Irrelevant exceptional divisors for curves on a smooth surface. Contemp. Math. 448, 245–254 (2007)MathSciNetGoogle Scholar
  15. 15.
    Wall C.T.C.: Singular Points of Plane Curves. London Mathematical Society Student Texts, 63. Cambridge University Press, Cambridge (2004)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Institute of Mathematics “Simion Stoilow” of the Romanian AcademyBucharestRomania
  2. 2.Şcoala Normală SuperioarăBucharestRomania
  3. 3.Université d’AngersAngersFrance

Personalised recommendations