Geometriae Dedicata

, Volume 144, Issue 1, pp 191–210 | Cite as

Criteria for the divergence of pairs of Teichmüller geodesics



We study the asymptotic geometry of Teichmüller geodesic rays. We show that, when the transverse measures to the vertical foliations of the quadratic differentials determining two different rays are topologically equivalent, but are not absolutely continuous with respect to each other, the rays diverge in Teichmüller space.


Teichmüller space Divergent geodesics Extremal length Ergodic 

Mathematics Subject Classification (2000)

32G15 37A25 


  1. 1.
    Ahlfors, L.: Lectures on Quasiconformal Mappings. University Lecture Series, AMS, 2nd edn. (2006)Google Scholar
  2. 2.
    Bers L.: Spaces of degenerating Riemann surfaces. Discontinuous groups and Riemann surfaces Annals of Mathematics Studies 79. Princeton University Press, Princeton, New Jersey (1974)Google Scholar
  3. 3.
    Choi, Y., Rafi, K., Series, C.: Lines of minima and Teichmüller geodesics To appear, Geometric and Functional AnalysisGoogle Scholar
  4. 4.
    Fathi, A., Laudenbach, F., Poenaru, V.: Travaux de Thurston sur les surfaces. Asterisque. 66–67 (1979)Google Scholar
  5. 5.
    Ivanov, N.: Isometries of Teichmüller spaces from the point of view of Mostow rigidity. In: Turaev, V., Vershik, A. (eds.) Topology, Ergodic Theory, Real Algebraic Geometry, pp. 131–149. Amer. Math. Soc. Transl. Ser. 2, V. 202, American Mathematical Society (2001)Google Scholar
  6. 6.
    Kerckhoff S.: The asymptotic geometry of Teichmüller space. Topology. 19, 23–41 (1980)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Masur H.: On a class of geodesics in Teichmüller space. Ann. Math. 102(2), 205–221 (1975)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Masur H.: Uniquely ergodic quadratic differentials. Comment. Math. Helvetici 55, 255–266 (1980)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Masur H.: Hausdorff dimension of the set of nonergodic foliations of a quadratic differential. Duke Math. J. 66, 387–442 (1992)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Masur H., Tabachnikov S.: Rational billiards and flat structures. In: Hasselblatt B., Katok, A. (eds.) Handbook of Dynamical Systems, vol. 1A, pp. 1015–1089. Elsevier, Amsterdam (2002)CrossRefGoogle Scholar
  11. 11.
    Masur H.: Interval exchange transformations and measured foliations. Ann. Math. 115, 169–200 (1982)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Maskit B.: Comparison of hyperbolic and extremal lengths. Ann. Acad. Sci. Fenn. Ser. A I Math. 10, 381–386 (1985) MR 87c:30062MATHMathSciNetGoogle Scholar
  13. 13.
    Minsky Y.: Extremal length estimates and product regions in Teichmüller space. Duke Math. J. 83(2), 249–286 (1996)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Minsky Y.: Harmonic maps, length, and energy in Teichmüller space. J. Differ. Geom. 35, 151–217 (1992)MATHMathSciNetGoogle Scholar
  15. 15.
    Rafi K.: Thick–thin decomposition for quadratic differentials. Math. Res. Lett 14(2), 333–341 (2007)MATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of MichiganAnn ArborUSA
  2. 2.Department of MathematicsUniversity of ChicagoChicagoUSA

Personalised recommendations