Geometriae Dedicata

, 139:211

Galois points for a plane curve in arbitrary characteristic

Original Paper

Abstract

In 1996, Hisao Yoshihara introduced a new notion in algebraic geometry: a Galois point for a plane curve is a point from which the projection induces a Galois extension of function fields. Yoshihara has established various new approaches to algebraic geometry by using Galois point or generalized notions of it. It is an interesting problem to determine the distribution of Galois points for a given plane curve. In this paper, we survey recent results related to this problem.

Keywords

Galois point Plane curve 

Mathematics Subject Classification (2000)

14H50 12F10 14H05 

References

  1. 1.
    Arbarello, E., Cornalba, M., Griffiths, P.A., Harris, J.: Geometry of Algebraic Curves, vol. I. Grundlehren der Mathematischen Wissenschaften, vol. 267. Springer-Verlag, New York (1985)Google Scholar
  2. 2.
    Chang H.C.: On plane algebraic curves. Chin. J. Math. 6, 185–189 (1978)MATHGoogle Scholar
  3. 3.
    Cukierman F.: Monodromy of projections, 15th School of Algebra. Math. Contemp. 16, 9–30 (1999)MATHMathSciNetGoogle Scholar
  4. 4.
    Duyaguit C., Miura K.: On the number of Galois points for plane curves of prime degree. Nihonkai Math. J. 14, 55–59 (2003)MATHMathSciNetGoogle Scholar
  5. 5.
    Duyaguit C., Yoshihara H.: Galois lines for normal elliptic curves. Algebra Colloq. 12, 205–212 (2005)MATHMathSciNetGoogle Scholar
  6. 6.
    Fukasawa S.: Galois points on quartic curves in characteristic 3. Nihonkai Math. J. 17, 103–110 (2006)MATHMathSciNetGoogle Scholar
  7. 7.
    Fukasawa S.: On the number of Galois points for a plane curve in positive characteristic, II. Geom. Dedicata 127, 131–137 (2007)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Fukasawa S.: On the number of Galois points for a plane curve in positive characteristic. Commun. Algebra 36, 29–36 (2008)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Fukasawa, S.: Classification of plane curves with infinitely many Galois points (preprint)Google Scholar
  10. 10.
    Fukasawa, S., Hasegawa, T.: Singular plane curves with infinitely many Galois points (preprint)Google Scholar
  11. 11.
    Hefez A.: Non-reflexive curves. Compos. Math. 69, 3–35 (1989)MATHMathSciNetGoogle Scholar
  12. 12.
    Hefez, A., Kleiman, S.: Notes on the duality of projective varieties. In: Geometry Today (Rome, 1984). Progress in Mathematics, vol. 60, pp. 143–183. Birkhäuser, Boston (1985)Google Scholar
  13. 13.
    Homma M.: A souped-up version of Pardini’s theorem and its application to funny curves. Compos. Math. 71, 295–302 (1989)MATHMathSciNetGoogle Scholar
  14. 14.
    Homma M.: Galois points for a Hermitian curve. Commun. Algebra 34, 4503–4511 (2006)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Homma M.: The Galois group of a projection of a Hermitian curve. Int. J. Algebra 1, 563–585 (2007)MATHMathSciNetGoogle Scholar
  16. 16.
    Iitaka S.: Algebraic Geometry. Graduate Texts in Mathematics, vol. 76. , Springer-Verlag (1982)MATHGoogle Scholar
  17. 17.
    Kanazawa M., Takahashi T., Yoshihara H.: The group generated by automorphisms belonging to Galois points of the quartic surface. Nihonkai Math. J. 12, 89–99 (2001)MATHMathSciNetGoogle Scholar
  18. 18.
    Kleiman, S.L.: Tangency and duality. In: Proceedings of the 1984 Vancouver Conference in Algebraic Geometry, CMS Conference Proceedings, vol. 6, pp. 163–226. American Mathematical Society, Providence (1986)Google Scholar
  19. 19.
    Kleiman, S.L.: Multiple tangents of smooth plane curves (after Kaji). Algebraic Geometry: Sundance 1988. Contemporary Mathematics, vol. 116, pp. 71–84. American Mathematical Society, Providence (1991)Google Scholar
  20. 20.
    Miranda, R.: Algebraic Curves and Riemann Surfaces. Graduate Studies in Mathematics, vol. 5. American Mathematical Society, Providence (1995)Google Scholar
  21. 21.
    Miura K.: Field theory for function fields of singular plane quartic curves. Bull. Aust. Math. Soc. 62, 193–204 (2000)MATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    Miura K.: Field theory for function fields of plane quintic curves. Algebra Colloq. 9, 303–312 (2002)MATHMathSciNetGoogle Scholar
  23. 23.
    Miura K.: Galois points on singular plane quartic curves. J. Algebra 287, 283–293 (2005)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Miura K.: Galois points for plane curves and Cremona transformations. J. Algebra 320, 987–995 (2008)MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Miura, K.: On dihedral Galois coverings arising from Lissajous’s curves. J. Geom. (to appear)Google Scholar
  26. 26.
    Miura K., Yoshihara H.: Field theory for function fields of plane quartic curves. J. Algebra 226, 283–294 (2000)MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Miura K., Yoshihara H.: Field theory for the function field of the quintic Fermat curve. Commun. Algebra 28, 1979–1988 (2000)MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Namba M.: Geometry of Projective Algebraic Curves. Dekker, New York (1984)MATHGoogle Scholar
  29. 29.
    Pardini R.: Some remarks on plane curves over fields of finite characteristic. Compos. Math. 60, 3–17 (1986)MATHMathSciNetGoogle Scholar
  30. 30.
    Pirola G., Schlesinger E.: Monodromy of projective curves. J. Algebraic Geom. 14, 623–642 (2005)MATHMathSciNetGoogle Scholar
  31. 31.
    Sakai H.: Infinitesimal deformation of Galois covering space and its application to Galois closure curve. Nihonkai Math. J. 14, 133–177 (2003)MATHMathSciNetGoogle Scholar
  32. 32.
    Stichtenoth H.: Algebraic Function Fields and Codes. Universitext. Springer-Verlag, Berlin (1993)Google Scholar
  33. 33.
    Stöhr K.O., Voloch J.F.: Weierstrass points and curves over finite fields. Proc. Lond. Math. Soc. 52, 1–19 (1986)MATHCrossRefGoogle Scholar
  34. 34.
    Takahashi T.: Minimal splitting surface determined by a projection of a smooth quartic surface. Algebra Colloq. 9, 107–115 (2002)MATHMathSciNetGoogle Scholar
  35. 35.
    Takahashi T.: Galois points on normal quartic surfaces. Osaka J. Math. 39, 647–663 (2002)MATHMathSciNetGoogle Scholar
  36. 36.
    Takahashi T.: Non-smooth Galois point on a quintic curve with one singular point. Nihonkai Math. J. 16, 57–66 (2005)MATHMathSciNetGoogle Scholar
  37. 37.
    Watanabe S.: The genera of Galois closure curves for plane quartic curve. Hiroshima Math. J. 38, 125–134 (2008)MATHMathSciNetGoogle Scholar
  38. 38.
    Yoshihara H.: Degree of irrationality of an algebraic surface. J. Algebra 167, 634–640 (1994)MATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    Yoshihara H.: Galois points on quartic surfaces. J. Math. Soc. Jpn. 53, 731–743 (2001)MATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Yoshihara H.: Function field theory of plane curves by dual curves. J. Algebra 239, 340–355 (2001)MATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    Yoshihara H.: Galois points for smooth hypersurfaces. J. Algebra 264, 520–534 (2003)MATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    Yoshihara H.: Families of Galois closure curves for plane quartic curves. J. Math. Kyoto Univ. 43, 651–659 (2003)MATHMathSciNetGoogle Scholar
  43. 43.
    Yoshihara H.: Galois lines for space curves. Algebra Colloq. 13, 455–469 (2006)MATHMathSciNetGoogle Scholar
  44. 44.
    Yoshihara H.: Galois embedding of algebraic variety and its application to abelian surface. Rend. Sem. Mat. Univ. Padova 117, 69–85 (2007)MATHMathSciNetGoogle Scholar
  45. 45.
    Yoshihara H.: Galois points for plane rational curves. Far East J. Math. Sci. 25, 273–284 (2007)MATHMathSciNetGoogle Scholar
  46. 46.
    Yoshihara, H.: Rational curve with Galois point and extendable Galois automorphism (preprint)Google Scholar
  47. 47.
    Yoshihara, H.: A note on minimal Galois embedding of abelian surface (preprint)Google Scholar
  48. 48.
    Yoshihara, H.: Open questions. Available at: http://mathweb.sc.niigata-u.ac.jp/~yosihara/openquestion.html

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of Mathematics, School of Science and EngineeringWaseda UniversityTokyoJapan

Personalised recommendations