Geometriae Dedicata

, Volume 126, Issue 1, pp 3–45

Lorentz spacetimes of constant curvature

Original Paper

Abstract

This paper is unpublished work of Geoffrey Mess written in 1990, which gives a classification of flat and anti-de Sitter domains of dependence in 2+1 dimensions.

Keywords

Spacetimes Flat Anti-de Sitter De Sitter Globally hyperbolic Domain of dependence 

Mathematics Subject Classification (2000)

83C80 (83C57) 57S25 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hirsch M.W. (1953). Immersion of Manifolds. Trans. Am. Math. Soc. 93: 242–276 CrossRefMathSciNetGoogle Scholar
  2. 2.
    Witten E. (1989). 2+1 dimensional gravity as an exactly soluble system. Nuclear Phys. B 311: 46 CrossRefMathSciNetGoogle Scholar
  3. 3.
    Labourie F. (1992). Surfaces convexes dans l’espace hyperbolique et \({\mathbb{CP}}^1\)-structures. J. London Math. Soc. (2) 45(3): 549–565 MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Carrière Y. (1989). Autour de la conjecture de L. Markus sur les variétés affines. Invent. Math. 95(3): 615–628 MATHCrossRefGoogle Scholar
  5. 5.
    Witten, E.: On the structure of the topological phase of two dimensional quantum gravity. Preprint IASSNS-HEP-89/66, Institute for Advanced StudyGoogle Scholar
  6. 6.
    Witten E. (1989). Topology-changing amplitudes in (2+1)-dimensional gravity. Nuclear Phys. B 323(1): 113–140 CrossRefMathSciNetGoogle Scholar
  7. 7.
    Goldman W.M. (1988). Topological components of spaces of representations. Invent. Math. 93(3): 557–607 MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Milnor J. (1958). On the existence of a connection with curvature zero. Comment. Math. Helv. 32: 215–223 MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Wood J.W. (1971). Bundles with totally disconnected structure group. Comment. Math. Helv. 46: 257–273 MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Benzécri, J.-P.: Variétés localement affines. In: Semin. de Topologie et de Geometrie differentielle Ch. Ehresmann 2 (1958/60), No.7, 1961Google Scholar
  11. 11.
    Benzécri J.-P. (1960). Sur les variétés localement affines et localement projectives. Bull. Soc. Math. France 88: 229–332 MATHMathSciNetGoogle Scholar
  12. 12.
    Scott P. (1978). Subgroups of surface groups are almost geometric. J. London Math. Soc. (2) 17(3): 555–565 MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Beardon A.F. (1983). The Geometry of Discrete Groups, Graduate Texts in Mathematics, vol. 91. Springer-Verlag, New York Google Scholar
  14. 14.
    Matsumoto S. (1987). Some remarks on foliated S 1 bundles. Invent. Math. 90(2): 343–358 MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Milnor J. (1977). On fundamental groups of complete affinely flat manifolds. Adv. Math. 25(2): 178–187 MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Thurston, W.P.: The Geometry and Topology of Three-manifolds. Lecture notes, Princeton University (1978)Google Scholar
  17. 17.
    Lok, L.: Deformations of locally homogeneous spaces and Kleinian groups. Thesis, Columbia University (1984)Google Scholar
  18. 18.
    Canary, R.D., Epstein, D.B.A., Green, P.: Notes on Notes of Thurston, Analytical and Geometric Aspects of Hyperbolic Space (Coventry/Durham, 1984), London Math. Soc. Lecture Note Ser., vol. 111, (pp. 3–92). Cambridge Univ. Press, Cambridge (1987)Google Scholar
  19. 19.
    Goldman, W.M.: Geometric structures on manifolds and varieties of representations. In: Geometry of Group Representations (Boulder, CO, 1987), volume 74 of Contemp. Math., pages 169–198. Amer. Math. Soc., Providence, RI (1988)Google Scholar
  20. 20.
    Geroch, R., Horowitz, G.T.: Global structure of spacetimes. In: General Relativity, pp. 212–293. Cambridge University Press, Cambridge (1979)Google Scholar
  21. 21.
    Casson, A.J., Bleiler, S.A.: Automorphisms of Surfaces after Nielsen and Thurston, London Mathematical Society Student Texts, vol. 9. Cambridge University Press, Cambridge (1988)Google Scholar
  22. 22.
    Epstein, D.B.A., Marden, A.: Convex Hulls in Hyperbolic Space, a Theorem of Sullivan, and Measured Pleated Surfaces, Analytical and geometric aspects of hyperbolic space (Coventry/Durham, 1984), London Math. Soc. Lecture Note Ser., vol. 111, pp. 113–253. Cambridge Univ. Press, Cambridge (1987)Google Scholar
  23. 23.
    Goldman W.M. (1984). The symplectic nature of fundamental groups of surfaces. Adv. Math. 54(2): 200–225 MATHCrossRefGoogle Scholar
  24. 24.
    Moncrief V. (1989). Reduction of the Einstein equations in 2+1 dimensions to a Hamiltonian system over Teichmüller space. J. Math. Phys. 30(12): 2907–2914 MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Kulkarni, R.S., Pinkall, U.: Uniformization of Geometric Structures with Applications to Conformal Geometry, Differential geometry, Peñí scola 1985, Lecture Notes in Math., vol. 1209, pp. 190–209. Springer, Berlin (1986)Google Scholar
  26. 26.
    Goldman W.M. (1987). Projective structures with Fuchsian holonomy. J. Differ. Geom. 25(3): 297–326 MATHGoogle Scholar
  27. 27.
    Apanasov, B.N.: Nontriviality of Teichmüller Space for Kleinian Group in space, Riemann Surfaces and Related Topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978) (Princeton, N.J.), Ann. of Math. Stud., vol. 97, pp. 21–31. Princeton Univ. Press (1981)Google Scholar
  28. 28.
    Gunning, R.C.: Lectures on Riemann Surfaces, Princeton Mathematical Notes. Princeton University Press, Princeton, NJ (1966)Google Scholar
  29. 29.
    Gallo D.M. (1989). Prescribed holonomy for projective structures on compact surfaces. Bull. Am. Math. Soc. (N.S.) 20(1): 31–34 MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Hejhal, D.A.: Monodromy Groups and Linearly Polymorphic Functions, Discontinuous groups and Riemann Surfaces (Proc. Conf., Univ. Maryland, College Park, Md., 1973), Ann. of Math. Studies, No. 79, pp. 247–261. Princeton Univ. Press, Princeton, NJ (1974)Google Scholar
  31. 31.
    Hejhal D.A. (1975). Monodromy groups and linearly polymorphic functions. Acta Math. 135(1): 1–55 MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Gallo, D.M., Goldman, W.M., Porter, R.M.: Projective structures with monodromy in PSL(2,\({\mathbb{R}})\) (to appear)Google Scholar
  33. 33.
    Tan, S.P.: Representations of Surface Groups into PSL 2(\({\mathbb{R}})\) and Geometric Structures. Thesis, UCLA (1988)Google Scholar
  34. 34.
    Magnus, W.: Noneuclidean Tesselations and their Groups. Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], Pure and Applied Mathematics, vol. 61. New York-London (1974)Google Scholar
  35. 35.
    Kuiper N.H. (1949). On conformally-flat spaces in the large. Ann. Math. 50(2): 916–924 MathSciNetGoogle Scholar
  36. 36.
    Kerckhoff S.P. (1983). The Nielsen realization problem. Ann. Math. (2) 117: 235–265 CrossRefMathSciNetGoogle Scholar
  37. 37.
    Thurston, W.P.: Earthquakes in Two-dimensional Hyperbolic Geometry. Low-dimensional topology and Kleinian groups (Coventry/Durham, 1984), London Math. Soc. Lecture Note Ser., vol. 112, pp. 91–112. Cambridge Univ. Press, Cambridge (1986)Google Scholar
  38. 38.
    Rourke, C.: Convex Ruled Surfaces, Analytical and Geometric Aspects of Hyperbolic Space (Coventry/Durham, 1984), London Math. Soc. Lecture Note Ser., vol. 111, pp. 255–272. Cambridge Univ. Press, Cambridge (1987)Google Scholar
  39. 39.
    Sullivan, D.: Travaux de Thurston sur les groupes quasi-fuchsiens et les variétés hyperboliques de dimension 3 fibrées sur S 1, Bourbaki Seminar, Vol. 1979/80, Lecture Notes in Math., vol. 842, pp. 196–214. Springer, Berlin (1981)Google Scholar
  40. 40.
    Margulis G.A. (1983). Free completely discontinuous groups of affine transformations. Dokl. Akad. Nauk SSSR 272(4): 785–788 MathSciNetGoogle Scholar
  41. 41.
    Margulis, G.A.: Complete Affine Locally Flat Manifolds with a Free Fundamental Group. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), vol. 134, pp. 190–205, (1984) Automorphic functions and number theory, IIGoogle Scholar
  42. 42.
    Drumm T.A., Goldman W.M. (1990). Complete flat Lorentz 3-manifolds with free fundamental group. Internat. J. Math. 1(2): 149–161 MATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    Drumm T.A. (1992). Fundamental polyhedra for Margulis space-times. Topology 31(4): 677–683 MATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    Goldman W.M., Kamishima Y. (1984). The fundamental group of a compact flat Lorentz space form is virtually polycyclic. J. Differ. Geom. 19(1): 233–240 MATHMathSciNetGoogle Scholar
  45. 45.
    Fried D., Goldman W.M. (1983). Three-dimensional affine crystallographic groups. Adv. Math. 47(1): 1–49 MATHCrossRefMathSciNetGoogle Scholar
  46. 46.
    Auslander L., Markus L. (1955). Holonomy of flat affinely connected manifolds. Ann. Math. 62(2): 139–151 MathSciNetCrossRefGoogle Scholar
  47. 47.
    Carrière Y., Dal’bo F. (1989). Généralisations du premier théorème de Bieberbach sur les groupes cristallographiques. Enseign. Math. (2) 35(3–4): 245–262 MATHMathSciNetGoogle Scholar
  48. 48.
    Tits J. (1972). Free subgroups in linear groups. J. Algebra 20: 250–270 MATHCrossRefMathSciNetGoogle Scholar
  49. 49.
    Dixon, J.D.: The Tits Alternative. Preprint, Carleton UniversityGoogle Scholar
  50. 50.
    Brooks R. (1981). The fundamental group and the spectrum of the Laplacian. Comment. Math. Helv. 56(4): 581–598 MATHCrossRefMathSciNetGoogle Scholar
  51. 51.
    Kulkarni R.S., Raymond F. (1985). 3-dimensional Lorentz space-forms and Seifert fiber spaces. J. Differential Geom. 21(2): 231–268 MATHMathSciNetGoogle Scholar
  52. 52.
    Goldman W.M. (1985). Nonstandard Lorentz space forms. J. Differential Geom. 21(2): 301–308 MATHMathSciNetGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2007

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of California at Los AngelesLos AngelesUSA

Personalised recommendations