Geometriae Dedicata

, Volume 125, Issue 1, pp 141–158 | Cite as

An introduction to right-angled Artin groups

Original Paper

Abstract

Recently, right-angled Artin groups have attracted much attention in geometric group theory. They have a rich structure of subgroups and nice algorithmic properties, and they give rise to cubical complexes with a variety of applications. This survey article is meant to introduce readers to these groups and to give an overview of the relevant literature.

Keywords

Artin group CAT(0) cube complex 

Mathematics Subject Classification (1991)

20F36 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abrams A. (2002). Configuration spaces of colored graphs. Dedicated to John Stallings on the occasion of his 65th birthday. Geom. Dedicata 92: 185–194 MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Abrams A. and Ghrist R. (2002). Finding topology in a factory: configuration spaces. Am. Math. Monthly 109(2): 140–150 MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Allcock D. (2002). Braid pictures for Artin groups. Trans. AMS 354: 3455–3474 MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Altobelli J. (1998). The word problem for Artin groups of FC type. J. Pure Appl. Algebra 129(1): 1–22 MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Baudisch A. (1981). Subgroups of semifree groups. Acta Math. Acad. Sci. Hung. 38(1–4): 19–28 CrossRefMathSciNetGoogle Scholar
  6. 6.
    Behrstock, J., Neumann, W.: Quasi-isometric classification of graph manifolds groups. Duke Math. J.Google Scholar
  7. 7.
    Bell R. (2005). Three-dimensional FC Artin groups are CAT(0). Geom. Dedicata 113: 21–53 MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Bestvina M. (1999). Non-positively curved aspects of Artin groups of finite type. Geom. Topol. 3: 269–302 MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Bestvina M. and Brady N. (1997). Morse theory and finiteness properties for groups. Invent. Math. 129: 445–470 MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Bigelow S. (2001). Braid groups are linear. J. Amer. Math. Soc. 14(2): 471–486 MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Bowers P. and Ruane K. (1996). Boundaries of nonpositively curved groups of the form G × Z n. Glasgow Math. J. 38(2): 177–189 MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Brady N. and Crisp J. (2002). Two-dimensional Artin groups with CAT(0) dimension three. Proceedings of the Conference on Geometric and Combinatorial Group Theory, Part I (Haifa, 2000). Geom. Dedicata 94: 185–214 MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Brady N. and Meier J. (2001). Connectivity at infinity for right angled Artin groups. Trans. Am. Math. Soc. 353(1): 117–132 MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Brady T. (2000). Artin groups of finite type with three generators. Mich. Math J. 47: 313–324 MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Brady T. and McCammond J. (2000). Three-generator Artin groups of large type are biautomatic. J. Pure Appl. Algebra 151: 1–9 MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Brady T. and Watt C. (2002). K(π, 1)’s for Artin groups of finite type. Geom. Dedicata 94: 225–250 MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Brändén, P.: Sign-graded posets, unimodality of W-polynomials and the Charney-Davis conjecture. Electron. J. Combin. 11 (2) 15, (2004/06) Research Paper 9Google Scholar
  18. 18.
    Bridson M. and Haefliger A. (1999). Metric Spaces of Non-positive Curvature, Grundlehren der Mathematischen Wissenschaften, vol. 319. Springer, Berlin Google Scholar
  19. 19.
    Brieskorn E. (1971). Die Fundamentalgruppe des Raumes der regulren Orbits einer endlichen komplexen Spiegelungsgruppe. Invent. Math. 12: 57–61 MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Brieskorn E. and Saito K. (1972). Artin-gruppen und Coxeter-gruppen. Invent. Math. 17: 245–271 MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Charney R. (1992). Artin groups of finite type are biautomatic. Math. Ann.alen 292: 671–683 MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Charney R. (1995). Geodesic automation and growth functions for Artin groups of finite type. Math. Ann. 301: 307–324 MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Charney R. (2004). The Deligne complex for the four-strand braid group. Trans. Am. Math. Soc. 356(10): 3881–3897 MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Charney R. and Crisp J. (2005). Automorphism groups of some affine and finite type Artin groups. Math. Res. Lett. 12(2–3): 321–333 MATHMathSciNetGoogle Scholar
  25. 25.
    Charney, R., Crisp, J., Vogtmann,K.: Automorphisms of 2-dimensional right-angled Artin groups. math. GR/0610980Google Scholar
  26. 26.
    Charney R. and Davis M. (1995). The K(π,1)-problem for hyperplane complements associated to infinite reflection groups. J. Am. Math. Soc. 8: 597–627 MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Charney R. and Davis M. (1995). Finite K(π,1)’s for Artin groups. In: Quinn, F. (eds) Prospects in Topology., pp 110–124. Ann. of Math. Stud., vol. 138 Google Scholar
  28. 28.
    Charney R. and Davis M. (1995). The Euler characteristic of a nonpositively curved, piecewise Euclidean manifold. Pacific J. Math. 171(1): 117–137 MATHMathSciNetGoogle Scholar
  29. 29.
    Charney R. and Peifer D. (2003). The K(π,1) conjecture for the affine braid groups. Comment. Math. Helv. 78(3): 584–600 MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Chermak A. (1998). Locally non-spherical Artin groups. J. Algebra 200(1): 56–98 MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Cohen A. and Wales D. (2002). Linearity of Artin groups of finite type. Isreal J. of Math. 131: 101–123 MATHMathSciNetGoogle Scholar
  32. 32.
    Crisp J. and Paris L. (2001). The solution to a conjecture of Tits on the subgroup generated by the squares of the generators of an Artin group. Invent. Math. 145(1): 19–36 MATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Crisp J. and Wiest B. (2004). Embeddings of graph braid and surface groups in right-angled Artin groups and braid groups. Algebr. Geom. Topol. 4: 439–472 MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Croke C. and Kleiner B. (2000). Spaces with nonpositive curvature and their ideal boundaries. Topology 39: 549–556 MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Culler M. and Vogtmann K. (1986). Moduli of graphs and automorphisms of free groups. Invent. Math. 84: 91–119 MATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Davis M. (1983). Groups generated by reflections and aspherical manifolds not covered by Euclidean space. Ann. Math. (2) 117(2): 293–324 CrossRefGoogle Scholar
  37. 37.
    Davis M. (1998). The cohomology of a Coxeter group with group ring coefficients. Duke Math. J. 91(2): 297–314 MATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    Davis M. and Januszkiewicz T. (2000). Right-angled Artin groups are commensurable with right-angled Coxeter groups. J. Pure Appl. Algebra 153(3): 229–235 MATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    Davis M. and Leary I. (2003). The l 2-cohomology of Artin groups. J. Lond. Math. Soc. (2) 68(2): 493–510 MATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Davis M. and Meier J. (2002). The topology at infinity of Coxeter groups and buildings. Comment. Math. Helv. 77(4): 746–766 MATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    Davis M. and Okun B. (2001). Vanishing theorems and conjectures for the 2-homology of right-angled Coxeter groups. Geom. Topol. 5: 7–74 MATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    Deligne P. (1972). Les immeubles des groupes de tresses généralisés. Invent. Math. 17: 273–302 MATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    Digne F. (2006). Presentations duales des groupes de tresses de type affine A͂. Comment. Math. Helv. 81(1): 23–47 MATHMathSciNetCrossRefGoogle Scholar
  44. 44.
    Droms C. (1987). Graph groups, coherence and three-manifolds. J. Algebra 106(2): 484–489 MATHCrossRefMathSciNetGoogle Scholar
  45. 45.
    Droms C. (1987). Isomorphisms of graph groups. Proc. Am. Math. Soc. 100(3): 407–408 MATHCrossRefMathSciNetGoogle Scholar
  46. 46.
    Droms C. (1987). Subgroups of graph groups. J. Algebra 110(2): 519–522 MATHCrossRefMathSciNetGoogle Scholar
  47. 47.
    Droms C., Servatius B. and Servatius H. (1989). Surface subgroups of graph groups. Proc. Am. Math. Soc. 106(3): 573–578 MATHCrossRefMathSciNetGoogle Scholar
  48. 48.
    Epstein D., Cannon J., Holt D., Levy S., Paterson M. and Thurston W. (1992). Word Processing in Groups. Jones and Bartlett Publishers, Boston, MA MATHGoogle Scholar
  49. 49.
    Farley D. and Sabalka L. (2005). Discrete Morse theory and graph braid groups. Algebr. Geom. Topol. 5: 1075–1109 MATHCrossRefMathSciNetGoogle Scholar
  50. 50.
    Formanek E. and Procesi C. (1992). The automorphism group of a free group is not linear. J. Algebra 149(2): 494–499 MATHCrossRefMathSciNetGoogle Scholar
  51. 51.
    Fox R. and Neuwirth L. (1962). The braid groups. Math. Scand. 10: 119–126 MATHMathSciNetGoogle Scholar
  52. 52.
    Garside F. (1969). The braid group and other groups. Q. J. Math. Oxford 20: 235–254 MATHCrossRefMathSciNetGoogle Scholar
  53. 53.
    Ghrist, R.: Configuration Spaces and Braid Groups on Graphs in Robotics, Knots, Braids, and Mapping Class Groups—Papers Dedicated to Joan S. Birman (New York, 1998). AMS/IP Stud. Adv. Math., vol. (24). pp 29–40. Amer. Math. Soc., Providence, RI (2001)Google Scholar
  54. 54.
    Ghrist R. and Peterson V. (2007). The geometry and topology of reconfiguration. Adv. Appl. Math. 38: 302–323 CrossRefMATHMathSciNetGoogle Scholar
  55. 55.
    Ghrist R. and LaValle S. (2006). Nonpositive curvature and Pareto-optimal coordination of robots, to appear in SIAM J. Control Optim. 45(5): 1697–1713 CrossRefMATHMathSciNetGoogle Scholar
  56. 56.
    Green, E.: Graph Products of Groups, Thesis, The University of Leeds (1990)Google Scholar
  57. 57.
    Gromov M. Hyperbolic Groups. Essays in Group Theory, 75–263, Math. Sci. Res. Inst. Publ., 8, Springer, New York (1987)Google Scholar
  58. 58.
    Hermiller S. and Meier J. (1995). Algorithms and geometry for graph products of groups. J. Algebra 171(1): 230–257 MATHCrossRefMathSciNetGoogle Scholar
  59. 59.
    Hsu T. and Wise D. (1999). On linear and residual properties of graph products. Mich. Math. J. 46(2): 251–259 MATHCrossRefMathSciNetGoogle Scholar
  60. 60.
    Hsu T. and Wise D. (2002). Separating quasiconvex subgroups of right-angled Artin groups. Math. Z. 240(3): 521–548 MATHCrossRefMathSciNetGoogle Scholar
  61. 61.
    Jensen C. and Meier J. (2005). The cohomology of right-angled Artin groups with group ring coefficients. Bull. Lond. Math. Soc. 37(5): 711–718 MATHCrossRefMathSciNetGoogle Scholar
  62. 62.
    Krammer D. (2002). Braid groups are linear. Ann. Math. (2) 155(1): 131–156 MATHMathSciNetGoogle Scholar
  63. 63.
    Laurence M. (1995). A generating set for the automorphism group of a graph group. J. Lond. Math. Soc. (2) 52: 318–334 MATHMathSciNetGoogle Scholar
  64. 64.
    Leary I. and Nucinkis B. (2003). A. Some groups of type VF. Invent. Math. 151(1): 135–165 MATHCrossRefMathSciNetGoogle Scholar
  65. 65.
    van der Lek, H.: The Homotopy Type of Complex Hyperplane Complements, Ph.D. thesis, Nijmegan (1983)Google Scholar
  66. 66.
    Meier J., Meinert H. and VanWyk L. (1998). Higher generation subgroup sets and the Σ-invariants of graph groups. Comment. Math. Helv. 73(1): 22–44 MATHCrossRefMathSciNetGoogle Scholar
  67. 67.
    Meier J. and VanWyk L. (1995). The Bieri-Neumann-Strebel invariants for graph groups. Proc. Lond. Math. Soc. (3) 71(2): 263–280 MATHCrossRefMathSciNetGoogle Scholar
  68. 68.
    Metaftsis V. and Raptis E. (2004). Subgroup separability of graphs of abelian groups. Proc. Am. Math. Soc. 132(7): 1873–1884 MATHCrossRefMathSciNetGoogle Scholar
  69. 69.
    Metaftsis, V., Raptis, E.: On the profinite topology of right-angled Artin groups, math.GR/0608190Google Scholar
  70. 70.
    Niblo G. and Reeves L. (1998). The geometry of cube complexes and the complexity of their fundamental groups. Topology 37: 621–633 MATHCrossRefMathSciNetGoogle Scholar
  71. 78.
    Papadima S. and Suciu A. (2006). Algebraic invariants for right-angled Artin groups. Math. Ann. 334(3): 533–555 MATHCrossRefMathSciNetGoogle Scholar
  72. 71.
    Peifer D. (1996). Artin groups of extra-large type are biautomatic. J. Pure Appl. Algebra 110: 15–56 MATHCrossRefMathSciNetGoogle Scholar
  73. 72.
    Reiner V. and Welker V. (2005). On the Charney–Davis and Neggers–Stanley conjectures. J. Combin. Theory Ser. A 109(2): 247–280 MATHCrossRefMathSciNetGoogle Scholar
  74. 73.
    Sabalka, L.: Embedding right-angled Artin groups into graph braid groups. Geom DedicataGoogle Scholar
  75. 74.
    Sageev M. and Wise D. (2005). The Tits alternative for CAT(0) cubical complexes. Bull. Lond Math. Soc. 37(5): 706–710 MATHCrossRefMathSciNetGoogle Scholar
  76. 75.
    Salvetti M. (1987). Topology of the complement of real hyperplanes in \({\mathbb{C}}^n\). Invent. Math. 88: 603–618 MATHCrossRefMathSciNetGoogle Scholar
  77. 76.
    Servatius H. (1989). Automorphisms of graph groups. J. Algebra 126: 34–60 MATHCrossRefMathSciNetGoogle Scholar
  78. 77.
    Scott, R.: Right-angled mock reflection and mock Artin groups. Trans. Am. Math. Soc. to appearGoogle Scholar
  79. 79.
    VanWyk L. (1994). Graph groups are biautomatic. J. Pure Appl. Algebra 94(3): 341–352 CrossRefMathSciNetGoogle Scholar
  80. 80.
    Vinberg E. (1971). Discrete linear groups that are generated by reflections. Izv. Akad. Nauk SSSR Ser. Mat. 35: 1072–1112 MATHMathSciNetGoogle Scholar
  81. 81.
    Wilson J. (2005). A CAT(0) group with uncountably many distinct boundaries. J. Group Theory 8(2): 229–238 MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2007

Authors and Affiliations

  1. 1.Department of MathematicsBrandeis UniversityWalthamUSA

Personalised recommendations