Geometriae Dedicata

, Volume 125, Issue 1, pp 39–46 | Cite as

Periodic billiard paths in right triangles are unstable

Original Paper

Abstract

A stable periodic billiard path in a triangle is a billiard path which persists under small perturbations of the triangle. This article gives a geometric proof that no right triangles have stable periodic billiard paths.

Keywords

billiard right triangles periodic billiard paths Euclidean geometry 

Mathematics Subject Classification (2000)

Primary 37D50 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Galperin G., Zvonkine D. (2003) Periodic billiard trajectories in right triangles and right-angled tetrahedra. Regul. Chaotic Dyn. 8(1): 29–44 MR 1963966 (2004b:37081)MATHCrossRefGoogle Scholar
  2. 2.
    Tabachnikov, S.: Billiards. Panor. Synth. (1), vi+142 (1995) MR 1328336 (96c:58134)Google Scholar
  3. 3.
    Thurston, W. P.: Three-dimensional geometry and topology, vol. 1. In: Levy, S. (ed.) Princeton Mathematical Series, vol.~35, Princeton University Press, Princeton, NJ (1997) MR 1435975 (97m:57016)Google Scholar
  4. 4.
    Troubetzkoy, S.: Periodic billiard orbits in right triangles, Ann. Inst. Fourier (Grenoble) 55(1), 29–46 (2005). http://arxiv.org/abs/math/0405280 MR 2141287Google Scholar
  5. 5.
    Troubetzkoy, S.: Periodic billiard orbits in right triangles II. arXiv:math.DS/0505637 (2005). http://arxiv.org/abs/math/0405280Google Scholar
  6. 6.
    Vorobets Ya.B., Galperin G.A., Stëpin A.M. (1991) Periodic billiard trajectories in polygons. Usp. Mat. Nauk 46(5(281)), 165–166 MR 1160340 (93b:58119)Google Scholar
  7. 7.
    Zemljakov A.N., Katok A.B. (1975) Topological transitivity of billiards in polygons. Mat. Zametki 18(2): 291–300 MR 0399423 (53 #3267)Google Scholar

Copyright information

© Springer Science + Business Media B.V. 2007

Authors and Affiliations

  1. 1.MathematicsNorthwestern UniversityEvanstonUSA

Personalised recommendations