Geometriae Dedicata

, Volume 124, Issue 1, pp 199–211 | Cite as

Wreath products with the integers, proper actions and Hilbert space compression

OriginalPaper

Abstract

We prove that the properties of acting metrically properly on some space with walls or some CAT(0) cube complex are closed by taking the wreath product with \({\mathbb{Z}}\) . We also give a lower bound for the (equivariant) Hilbert space compression of \({H\wr\mathbb{Z}}\) in terms of the (equivariant) Hilbert space compression of H.

Keywords

Wreath products Proper (group) actions Compression Hilbert spaces Trees CAT(0) cube complexes 

Mathematics Subject Classifications

Primary: 20E22 Secondary: 20E08 20F69 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arzhantseva G.N., Guba V.S. and Sapir M.V. (2006). Metrics on diagram groups and uniform embeddings in a Hilbert space. Comment. Math. Helv. 81(4): 911–929 MATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Bridson, M.R., Haefliger, A.: Metric spaces of non-positive curvature, volume 319 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer Berlin Heidelberg New York (1999)Google Scholar
  3. 3.
    Brodskiy N., Sonkin D. (2005) Compression of uniform embeddings into Hilbert space. arXiv:math.GR/0509108, preprint.Google Scholar
  4. 4.
    Cherix, P.A., Cowling, M., Jolissaint, P., Julg, P., Valette, A.: Groups with the Haagerup property, volume 197 of Progress in Mathematics. Birkhäuser Verlag, Basel, Gromov’s a-T-menability (2001)Google Scholar
  5. 5.
    Cherix P.-A., Martin F. and Valette A. (2004). Spaces with measured walls, the Haagerup property and property (T). Ergodic Theory Dyn. Syst. 24(6): 1895–1908 MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Campbell S. and Niblo G.A. (2005). Hilbert space compression and exactness of discrete groups. J. Funct. Anal. 222(2): 292–305 MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Chatterji I. and Niblo G. (2005). From wall spaces to CAT(0) cube complexes. Int. J. Algebra Comput. 15((5 & 6)): 875–885 MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Cornulier Y., Tessera, R., Valette. A.: Isometric group actions on Hilbert spaces: growth of cocycles. arXiv:math. GR/0509527, preprint (2005), to appear in Geom. Funct. AnalGoogle Scholar
  9. 9.
    Guentner E. and Kaminker J. (2004). Exactness and uniform embeddability of discrete groups. J. Lond. Math. Soc. (2) 70(3): 703–718 MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Haglund, F., Paulin, F.: Simplicité de groupes d’automorphismes d’espaces à courbure négative. In: Proceedings of The Epstein Birthday Schrift, volume 1 of Geom. Topol. Monogr., pp. 181–248. Geom. Topol. Publ., Coventry (1998)Google Scholar
  11. 11.
    Nica B. (2004). Cubulating spaces with walls. Algebr. Geom. Topol., 4: 297–309 MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Parry W. (1992). Growth series of some wreath products. Trans. Am. Math. Soc. 331(2): 751–759 MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Sageev M. (1995). Ends of group pairs and non-positively curved cube complexes. Proc. Lond. Math. Soc. (3) 71(3): 585–617 MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Serre, J.-P.: Arbres, amalgames, SL 2. Société Mathématique de France, Paris, 1977. Avec un sommaire anglais, Rédigé avec la collaboration de Hyman Bass, Astérisque, No. 46.Google Scholar
  15. 15.
    Tessera R. (2006) Asymptotic isoperimetry on groups and uniform embeddings into Banach spaces. arXiv:math.GR/0603138, preprintGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2007

Authors and Affiliations

  1. 1.Laboratoire de MathématiquesUniversité Blaise PascalAubière CedexFrance
  2. 2.Institut de MathématiquesUniversité de NeuchâtelNeuchâtelSwitzerland

Personalised recommendations