Geometriae Dedicata

, Volume 123, Issue 1, pp 89–112

On the convergence of metric and geometric properties of polyhedral surfaces

  • Klaus Hildebrandt
  • Konrad Polthier
  • Max Wardetzky
Original Paper

Abstract

We provide conditions for convergence of polyhedral surfaces and their discrete geometric properties to smooth surfaces embedded in Euclidean 3-space. Under the assumption of convergence of surfaces in Hausdorff distance, we show that convergence of the following properties are equivalent: surface normals, surface area, metric tensors, and Laplace–Beltrami operators. Additionally, we derive convergence of minimizing geodesics, mean curvature vectors, and solutions to the Dirichlet problem.

Keywords

Discrete differential geometry Polyhedral surfaces Minimal surfaces Numerical analysis 

Mathematics Subject Classification (2000)

52B70 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aleksandrov, A.D., Zalgaller, V.A.: Intrinsic Geometry of Surfaces, vol. 15 of Translation of Mathematical Monographs. AMS (1967)Google Scholar
  2. 2.
    Banchoff T. (1967). Critical points and curvature for embedded polyhedra. J. Differ. Geom. 1: 257–268 MathSciNetGoogle Scholar
  3. 3.
    Bobenko A.I., Hoffmann T. and Springborn B.A. (2006). Minimal surfaces from circle patterns: geometry from combinatorics. Ann. Math. 164(1): 231–264 MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Bobenko A.I. and Pinkall U. (1996). Discrete isothermic surfaces. J. Reine Angew. Math. 475: 187–208 MATHMathSciNetGoogle Scholar
  5. 5.
    Braess D. (2001). Finite Elements Theory, Fast Solvers and Applications in Solid Mechanics. Cambridge University Press, Cambridge MATHGoogle Scholar
  6. 6.
    Brakke K. (1992). The surface evolver. Exp. Math. 1(2): 141–165 MATHMathSciNetGoogle Scholar
  7. 7.
    Brehm U. and Kühnel W. (1982). Smooth approximation of polyhedral surfaces regarding curvatures. Geom. Dedicata 12: 435–461 MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Cheeger J., Müller W. and Schrader R. (1984). Curvature of piecewise flat metrics. Comm. Math. Phys. 92: 405–454 MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Cohen-Steiner, D., Morvan, J.-M.: Restricted Delaunay triangulations and normal cycle. In: Proceedings of the Nineteenth Annual Symposium on Computational Geometry, pp. 312–321 (2003)Google Scholar
  10. 10.
    Duffin R.J. (1959). Distributed and lumped networks. J. Math. Mech. 8: 793–825 MATHMathSciNetGoogle Scholar
  11. 11.
    Dziuk G.: Finite elements for the Beltrami operator on arbitrary surfaces. In: Partial Differential Equations and Calculus of Variations, vol. 1357 of Lec. Notes Math., pp. 142–155. Springer (1988)Google Scholar
  12. 12.
    Dziuk G. (1991). An algorithm for evolutionary surfaces. Num. Math. 58: 603–611 MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Dziuk G. and Hutchinson J.E. (1999). The discrete Plateau problem: convergence results. Math. Comput. 68: 519–546 MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Federer H. (1959). Curvature measures. Trans. Am. Math. 93: 418–491 MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Fu J.H.G. (1993). Convergence of curvatures in secant approximations. J. Differ. Geom. 37: 177–190 MATHGoogle Scholar
  16. 16.
    Gilbarg D., Trudinger N.S.: Elliptic Partial Differential Equations. Springer (1977)Google Scholar
  17. 17.
    Goodman-Strauss, C., Sullivan, J.M.: Cubic Polyhedra, http://arXiv.org.math/0205145 (2002)Google Scholar
  18. 18.
    Gromov M.: Structures métriques pour les variétés riemanniennes. Textes Mathématiques. Cedic/Fernand Nathan (1981)Google Scholar
  19. 19.
    Große-Brauckmann K. and Polthier K. (1997). Compact constant mean curvature surfaces with low genus. Exper. Math. 6(1): 13–32 MATHGoogle Scholar
  20. 20.
    Karcher H. and Polthier K. (1996). Construction of triply periodic minimal surfaces. Phil. Trans. Royal Soc. Lond. 354: 2077–2104 MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Meek D.S. and Walton D.J. (2000). On surface normal and Gaussian curvature approximations given data sampled from a smooth surface. Comput. Aided Geom. Design 17(6): 521–543 MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Mercat C. (2001). Discrete Riemann surfaces and the Ising model. Commun. Math. Phys. 218(1): 177–216 MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Morvan, J.-M.: Generalized curvatures. Preprint.Google Scholar
  24. 24.
    Morvan J.-M. and Thibert B. (2004). Approximation of the normal vector field and the area of a smooth surface. Discrete Comput. Geom. 32(3): 383–400 MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Oberknapp B., Polthier K.: An algorithm for discrete constant mean curvature surfaces. In: Hege, H.-C., Polthier, K. (eds.), Visualization and Mathematics. Springer (1997)Google Scholar
  26. 26.
    Pinkall U. and Polthier K. (1993). Computing discrete minimal surfaces and their conjugates. Exp. Math. 2: 15–36 MATHMathSciNetGoogle Scholar
  27. 27.
    Polthier K.: Computational aspects of discrete minimal surfaces. In: Hoffman, D. (ed.), Global Theory of Minimal Surfaces. CMI/AMS (2005)Google Scholar
  28. 28.
    Polthier, K.: Unstable periodic discrete minimal surfaces. In: Hildebrandt, S., Karcher, H. (eds.) Geometric Analysis and Nonlinear Partial Differential Equations, pp. 127–143. Springer Verlag (2002)Google Scholar
  29. 29.
    Polthier K. and Rossman W. (2002). Index of discrete constant mean curvature surfaces. J. Reine Angew. Math. 549: 47–77 MATHMathSciNetGoogle Scholar
  30. 30.
    Pozzi P. (2005). The discrete Douglas problem: convergence results. IMA J. Num. Ana. 25(42): 337–378 MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Reshetnyak Y.G.: Geometry IV. Non-regular Riemannian geometry. In: Encyclopaedia of Mathematical Sciences, vol. 70, Springer-Verlag, pp. 3–164 (1993)Google Scholar
  32. 32.
    Rossman, W.: Infinite periodic discrete minimal surfaces without self-intersections. Balkan J. Geom. Appl. 10, 106–128 (2005)MATHMathSciNetGoogle Scholar
  33. 33.
    Schramm O. (1997). Circle patterns with the combinatorics of the square grid. Duke Math. J. 86: 347–389 MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Schwarz H.A.: Sur une définition erronée de l’aire d’une surface courbe. In: Gesammelte Mathematische Abhandlungen, vol. 2. Springer-Verlag, pp. 309–311 (1890)Google Scholar
  35. 35.
    Stone D.A. (1976). Geodesics in piecewise linear manifolds. Trans. AMS 215: 1–44 MATHCrossRefGoogle Scholar
  36. 36.
    Thurston W.P. The Geometry and Topology of Three-manifolds. http://www.msri.org/publications/books/gt3m (1980)Google Scholar
  37. 37.
    Troyanov M. (1986). Les surfaces euclidiennes à singularités coniques. Ens. Math. 32: 79–94 MATHMathSciNetGoogle Scholar
  38. 38.
    Wardetzky M.: Discrete differential operators on polyhedral surfaces—convergence and approximation. Ph.D. thesis, Free University Berlin (2006)Google Scholar
  39. 39.
    Xu G. (2004). Discrete Laplace–Beltrami operators and their convergence. Comput. Aided Geom. Design 21(8): 767–784 MATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Xu G. (2006). Convergence analysis of a discretization scheme for Gaussian curvature over triangular surfaces. Comput. Aided Geom. Design 23(2): 193–207 MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2007

Authors and Affiliations

  • Klaus Hildebrandt
    • 1
  • Konrad Polthier
    • 1
  • Max Wardetzky
    • 1
  1. 1.Department of MathematicsFreie Universität BerlinBerlinGermany

Personalised recommendations