Geometriae Dedicata

, Volume 121, Issue 1, pp 221–245

Gromov hyperbolicity of Denjoy Domains

  • Venancio Alvarez
  • Ana Portilla
  • Jose M. Rodriguez
  • Eva Touris
Original Paper


In this paper we characterize the Gromov hyperbolicity of the double of a metric space. This result allows to give a characterization of the hyperbolic Denjoy domains, in terms of the distance to \(\mathbb{R}\) of the points in some geodesics. In the particular case of trains (a kind of Riemann surfaces which includes the flute surfaces), we obtain more explicit criteria which depend just on the lengths of what we have called fundamental geodesics.


Denjoy domain Flute surface Gromov hyperbolicity Riemann surface Schottky double Train 

Mathematical Subject Classifications (2000)

41A10 46E35 46G10 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahlfors L., Sario L. (1960) Riemann Surfaces. Princeton Univ. Press, Princeton, New JerseyMATHGoogle Scholar
  2. 2.
    Aikawa H. (2003) Positive harmonic functions of finite order in a Denjoy type domain. Proc. Am. Math. Soc. 131, 3873–3881MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Alvarez V., Pestana D., Rodríguez J.M. (1999) Isoperimetric inequalities in Riemann surfaces of infinite type. Rev. Mat. Iberoamericana 15, 353–427MATHMathSciNetGoogle Scholar
  4. 4.
    Alvarez V., Rodrí guez J.M., Yakubovich V.A. (2001) Subadditivity of p-harmonic “measure” on graphs. Michigan Math. J. 49, 47–64MATHMathSciNetGoogle Scholar
  5. 5.
    Anderson J.W. (1999) Hyperbolic Geometry. Springer, LondonMATHGoogle Scholar
  6. 6.
    Balogh Z.M., Buckley S.M. (2003) Geometric characterizations of Gromov hyperbolicity. Invent. Math. 153, 261–301MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Basmajian A. (1990) Constructing pair of pants. Ann. Acad. Sci. Fenn. Ser. AI 15, 65–74MATHMathSciNetGoogle Scholar
  8. 8.
    Basmajian A. (1993) Hyperbolic structures for surfaces of infinite type. Trans. Am. Math. Soc. 336, 421–444MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Beardon A.F. (1983) The Geometry of Discrete Groups. Springer-Verlage, New YorkMATHGoogle Scholar
  10. 10.
    Bishop R., O’Neill B. (1969) Manifolds of negative curvature. Trans. Am. Math. Soc. 145, 1–49MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Bonk M. (1996) Quasi-geodesics segments and Gromov hyperbolic spaces. Geom. Dedicata 62, 281–298MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Buser P. (1992) Geometry and Spectra of Compact Riemann Surfaces. Birkhäuser, BostonMATHGoogle Scholar
  13. 13.
    Cantón A., Fernández J.L., Pestana D., Rodríguez J.M. (2001) On harmonic functions on trees. Poten. Anal. 15, 199–244MATHCrossRefGoogle Scholar
  14. 14.
    Chavel I. (1984) Eigenvalues in Riemannian Geometry. Academic Press, New YorkMATHGoogle Scholar
  15. 15.
    Coornaert M., Delzant T., Papadopoulos A. (1989) Notes sur les groups hyperboliques de Gromov. I.R.M.A., StrasbourgGoogle Scholar
  16. 16.
    Eberlein, P.: Surfaces of nonpositive curvature. Mem. Am. Math. Soc. 20(218), (1979)Google Scholar
  17. 17.
    Fenchel W. (1989) Elementary Geometry in Hyperbolic Space. Walter de Gruyter, Berlin-New YorkMATHGoogle Scholar
  18. 18.
    Fernández J.L., Rodríguez J.M. (1992) Area growth and Green’s function of Riemann surfaces. Arkiv för matematik 30, 83–92MATHCrossRefGoogle Scholar
  19. 19.
    Garnett J., Jones P. (1985) The Corona theorem for Denjoy domains. Acta Math. 155, 27–40MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Ghys E., de la Harpe P.: Sur les Groupes Hyperboliques d’après Mikhael Gromov. Progress in Mathematics, Vol. 83. Birkhäuser (1990)Google Scholar
  21. 21.
    González M.J. (1998) An estimate on the distortion of the logarithmic capacity. Proc. Am. Math. Soc. 126, 1429–1431MATHCrossRefGoogle Scholar
  22. 22.
    Haas A. (1996) Dirichlet points, Garnett points, and infinite ends of hyperbolic surfaces I. Ann. Acad. Sci. Fenn. Ser. AI 21, 3–29MATHMathSciNetGoogle Scholar
  23. 23.
    Holopainen I., Soardi P.M. (1997) p-harmonic functions on graphs and manifolds. Manuscripta Math. 94, 95–110MATHMathSciNetGoogle Scholar
  24. 24.
    Kanai M. (1985) Rough isometries and combinatorial approximations of geometries of non-compact Riemannian manifolds. J. Math. Soc. Japan 37, 391–413MATHMathSciNetCrossRefGoogle Scholar
  25. 25.
    Kanai M. (1986) Rough isometries and the parabolicity of Riemannian manifolds. J. Math. Soc. Japan 38, 227–238MATHMathSciNetGoogle Scholar
  26. 26.
    Portilla A., Rodríguez J.M., Tourís E. (2004) Gromov hyperbolicity through decomposition of metric spaces II. J. Geom. Anal. 14, 123–149MATHMathSciNetGoogle Scholar
  27. 27.
    Portilla A., Rodríguez J.M., Tourís E. (2004) The topology of balls and Gromov hyperbolicity of Riemann surfaces. Diff. Geom. Appl. 21, 317–335MATHCrossRefGoogle Scholar
  28. 28.
    Portilla A., Rodríguez J.M., Tourís E. (2006) The role of funnels and punctures in the Gromov hyperbolicity of Riemann surfaces. Proc. Edinburgh Math. Soc. 49, 399–425MATHCrossRefGoogle Scholar
  29. 29.
    Soardi P.M. (1993) Rough isometries and Dirichlet finite harmonic functions on graphs. Proc. Am. Math. Soc. 119, 1239–1248MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2006

Authors and Affiliations

  • Venancio Alvarez
    • 2
  • Ana Portilla
    • 1
  • Jose M. Rodriguez
    • 1
  • Eva Touris
    • 1
  1. 1.Departamento de Matemáticas, Escuela Politécnica SuperiorUniversidad Carlos III de MadridMadridSpain
  2. 2.Departamento de Análisis MatemáticoFacultad de CienciasMálagaSpain

Personalised recommendations