Advertisement

Geometriae Dedicata

, Volume 121, Issue 1, pp 43–59 | Cite as

Splittings of generalized Baumslag–Solitar groups

  • Max ForesterEmail author
Original Paper

Abstract

We study the structure of generalized Baumslag–Solitar groups from the point of view of their (usually non-unique) splittings as fundamental groups of graphs of infinite cyclic groups. We find and characterize certain decompositions of smallest complexity (fully reduced decompositions) and give a simplified proof of the existence of deformations. We also prove a finiteness theorem and solve the isomorphism problem for generalized Baumslag–Solitar groups with no non-trivial integral moduli.

Keywords

Baumslag–Solitar group G-tree Graph of groups Deformation Slide move Modular homomorphism 

Mathematics Subject Classifications (2000)

20E08 20F10 20E34 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bass H. (1976) Some remarks on group actions on trees. Comm. Algebra 4(12): 1091–1126zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bass H. (1993) Covering theory for graphs of groups. J. Pure Appl. Algebra 89, 3–47zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bass H., Kulkarni R. (1990) Uniform tree lattices. J. Amer. Math. Soc. 3(4): 843–902zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Baumslag G., Solitar D. (1962) Some two-generator one-relator non-Hopfian groups. Bull. Amer. Math. Soc. 68, 199–201zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Bestvina M., Feighn M. (1991) Bounding the complexity of simplicial group actions on trees. Invent. Math. 103, 449–469zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Farb B., Mosher L. (1998) A rigidity theorem for the solvable Baumslag–Solitar groups. Invent. Math. 131(2): 419–451zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Forester M. (2002) Deformation and rigidity of simplicial group actions on trees. Geom. Topol. 6, 219–267zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Forester M. (2003) On uniqueness of JSJ decompositions of finitely generated groups. Comment. Math. Helv. 78, 740–751zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Gilbert N.D., Howie J., Metaftsis V., Raptis E. (2000) Tree actions of automorphism groups. J. Group Theory 3, 213–223zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Herrlich F. (1988) Graphs of groups with isomorphic fundamental group. Arch. Math. 51, 232–237zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Kropholler P.H. (1990) Baumslag–Solitar groups and some other groups of cohomological dimension two. Comment. Math. Helv. 65, 547–558zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Kropholler P.H. (1993) A group-theoretic proof of the torus theorem. In: Niblo G.A., Roller M.A. (eds). Geometric Group Theory, Vol. 1 , LMS Lecture Note Series, vol. 181, Cambridge University Press, Cambridge, pp. 138–158Google Scholar
  13. 13.
    Levitt, G. Characterizing rigid simplicial actions on trees. In: Geometric methods in group theory, Contempary Mathematics vol. 372, pp. 27–33. Ameri. Mathe. Soc. Providence, RI (2005)Google Scholar
  14. 14.
    Pettet M.R. (1999) The automorphism group of a graph product of groups. Comm. Algebra 27, 4691–4708zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Jean-Pierre S. (1980) Trees. Springer-Verlag, BerlinzbMATHGoogle Scholar
  16. 16.
    Whyte K. (2001) The large scale geometry of the higher Baumslag–Solitar groups. Geom. Funct. Anal. 11(6): 1327–1343zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  1. 1.Mathematics DepartmentUniversity of OklahomaNormanUSA

Personalised recommendations