Geometriae Dedicata

, Volume 117, Issue 1, pp 47–64 | Cite as

On the Number of Tubes Touching a Sphere or a Tube

Article

Abstract

A problem is formulated about how many unit-radius tubes can touch a ball of given radius from the outside and from the inside. Upper bounds for the maximum numbers of contacts are obtained for both interior and exterior contacts. It is also shown that the maximum number of unit-radius tubes touching the same orthogonal cross-section of a particular tube of radius P is [π (arcsin(P+1)−1)−1] and if the number of contacts takes on its maximum, then all tubes are locally aligned.

Keywords

packing tube bialy kissing number spherical codes Tammes’ problem 

Mathematics Subject Classifications (2000)

52C17 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banavar J.R., Maritan A. Colloquium: Geometrical approach to protein folding: A tube picture. Rev. Modern Phys. 75(1): 23–34Google Scholar
  2. Berger M. (2003). A Panoramic View of Riemannian Geometry. Springer, New YorkMATHGoogle Scholar
  3. Bishop R.L. (1975). There is more than one way to frame a curve. Amer. Math. Monthly 82(3): 246–251MATHCrossRefMathSciNetGoogle Scholar
  4. Brass P., Wenk C. (2000). On the number of cylinders touching a ball. Geom. Dedicata. 81: 281–284MATHCrossRefMathSciNetGoogle Scholar
  5. Cantarella J., Kusner R.B., Sullivan J.M. (2002). On the minimum ropelength of knots and links. Invent. Math. 150(2): 257–286MATHCrossRefMathSciNetGoogle Scholar
  6. Conway J.H., Sloane N.J.A. (1999). Sphere Packings, Lattices and Groups, 3rd edn. Grundle. Math. Wiss. 290. Springer, New YorkMATHGoogle Scholar
  7. Costello G.A. (1997). Theory of Wire Rope, 2nd edn Mech. Engng. Ser., Springer, New YorkGoogle Scholar
  8. Earnshaw W.C., Harrison S.C. (1977). DNA arrangement in isometric phage heads. Nature 268: 598–602CrossRefGoogle Scholar
  9. Fuller F.B. (1971). The writhing number of a space curve, Proc. Natl. Acad. Sci. USA 68(4): 815–819MATHCrossRefMathSciNetGoogle Scholar
  10. Gonzalez O., Maddocks J.H. (1999). Global curvature, thickness, and the ideal shapes of knots. Proc. Natl. Acad. Sci. USA 96(9): 4769–4773MATHCrossRefMathSciNetGoogle Scholar
  11. Gray A. (2004). Tubes 2nd edn, Progr. in Math. 221, Birkhäuser, Basel, 2004Google Scholar
  12. Heppes A., Szabó L. (1991). On the number of cylinders touching a ball. Geom. Dedicata 40: 111–116MATHCrossRefMathSciNetGoogle Scholar
  13. Hud N.V., Downing K.H. (2001). Cryoelectron microscopy of lambda phage DNA condensates in vitreous ice: The fine structure of DNA toroids. Proc. Natl. Acad. Sci. USA. 98(26): 14925–14930CrossRefGoogle Scholar
  14. Kottwitz D.A. (1991). The densest packing of equal circles on a sphere. Acta Crystallog. Sect. A 47: 158–165CrossRefMathSciNetGoogle Scholar
  15. Kusner, R.: On thickness and packing density for knots and links, In: J. A. Calvo, K. C. Millett, and E. J. Rawdon (eds), Physical Knots: Knotting, Linking, and Folding Geometric Objects in \(\mathbb{R}^3\), Contemp. Math., Amer. Math. Soc., Providence, 2002Google Scholar
  16. Livolant F., Levelut A.M., Doucet J., Benoit J.P. (1989). The highly concentrated liquid-crystalline phase of DNA is columnar hexagonal. Nature. 339: 724–726CrossRefGoogle Scholar
  17. Robinson R.M. (1961). Arrangement of 24 points on a sphere. Math. Ann. 144: 17–48MATHCrossRefMathSciNetGoogle Scholar
  18. Schiessel H., Rudnick J., Bruinsma R., Gelbart W.M. (2000). Organized condensation of worm-like chains. Europhys. Lett. 51(2): 237–243CrossRefGoogle Scholar
  19. Sloane, N. J. A., Hardin, R. H., Smith, W. D. et al., Tables of Spherical Codes. Published electronically at www.research.att.com/∼njas/packings/Google Scholar
  20. Stasiak A., Katritch V., Kauffman L.H. (ed). Ideal Knots, Ser. Knots Everything. World Scientific, SingaporeGoogle Scholar
  21. Tammes P.M.L. (1930). On the origin of number and arrangement of the places of exit on the surface of pollen-grains. Rec. Trav. Bot. Néerlan. 27: 1–84Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Max Planck Institute for Physics of Complex SystemsDresdenGermany

Personalised recommendations