Advertisement

Geometriae Dedicata

, Volume 114, Issue 1, pp 209–228 | Cite as

Non-Hopfian Relatively Free Groups

  • S. V. IvanovEmail author
  • A. M. Storozhev
Article

Abstract

To solve problems of Gilbert Baumslag and Hanna Neumann, posed in the 1960’s, we construct a nontrivial variety of groups all of whose noncyclic free groups are non-Hopfian.

Keywords

free groups Hopfian groups 

Mathematics Subject Classifications (2000)

20E10 20F05 20F06 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adian, S. I. 1979The Burnside Problem and Identities in GroupsSpringer-VerlagNew YorkNauka, Moscow, 1975; English translationGoogle Scholar
  2. 2.
    Baumslag, G. 1963Wreath products and extensionsMath Z81286299Google Scholar
  3. 3.
    Gromov, M.: Hyperbolic groups, In: Essays in Group Theory, M.S.R.I. Publ. 8, Springer, 1987, pp. 75–263.Google Scholar
  4. 4.
    Hall, Ph., Higman, G. 1956On the p-length of p-soluble groups and reduction theorems for Burnside’s problemProc. London. Math. Soc6142Google Scholar
  5. 5.
    Ivanov, S. V. 1994The free Burnside groups of sufficiently large exponentsInternat. J. Algebra. Comput41308CrossRefGoogle Scholar
  6. 6.
    Ivanov, S. V. 1998On the Burnside problem for groups of even exponentDocumenta MathICM-986776Google Scholar
  7. 7.
    Ivanov, S. V., Ol’shanskii, A. Yu. 1991Some Applications of Graded Diagrams in Combinatorial Group TheoryCambridge Univ. PressCambridge and New York258308London Math. Soc. Lecture Note Ser. 160Google Scholar
  8. 8.
    Kostrikin, A. I. 1959On a problem of BurnsideMath. USSR Izvest23334Google Scholar
  9. 9.
    Kostrikin, A. I. 1990Around BurnsideSpringer-VerlagBerlinNauka, Moscow, 1986; English translationGoogle Scholar
  10. 10.
    Kourovka Notebook: Unsolved Problems in Group Theory, 12th edn, Novosibirsk, 1992.Google Scholar
  11. 11.
    Lysenok, I. G. 1996Infinite Burnside groups of even periodMath Ross Izvest603224Google Scholar
  12. 12.
    Neumann, H. 1967Varieties of GroupsSpringer-VerlagNew YorkGoogle Scholar
  13. 13.
    Novikov, P. S. and Adian, S. I.: On infinite periodic groups, I, II, III, Math. USSR Izvest. 32 (1968), 212–244, 251–524, 709–731.Google Scholar
  14. 14.
    Ol’shanskii, A. Yu. 1982On the Novikov-Adian theoremMat. Sb118203235Google Scholar
  15. 15.
    Ol’shanskii, A. Yu. 1985Varieties in which all finite groups are abelianMat. Sb1265982Google Scholar
  16. 16.
    Ol’shanskii, A.Yu. 1991Geometry of Defining Relations in GroupsKluwer Acad PublDordrechtNauka, Moscow, 1989; English translation: Math. Appl., Soviet Ser. 70Google Scholar
  17. 17.
    Storozhev, A. M. 1994On abelian subgroups of relatively free groupsComm Algebra2226772701Google Scholar
  18. 18.
    Sela, Z. 1999Endomorphisms of hyperbolic groups. I. The Hopf propertyTopology38301321CrossRefGoogle Scholar
  19. 19.
    Zelmanov, E. I. 1991Solution of the restricted Burnside problem for groups of odd exponentMath USSR Izvest364160Google Scholar
  20. 20.
    Zelmanov, E. I. 1992A solution of the restricted Burnside problem for 2-groupsMat. Sb72543565Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of IllinoisUrbanaU.S.A.
  2. 2.Australian Mathematics TrustUniversity of CanberraBelconnenAustralia

Personalised recommendations