Geometriae Dedicata

, Volume 112, Issue 1, pp 225–237 | Cite as

Arithmeticity vs. Nonlinearity for Irreducible Lattices

Article

Abstract

We establish an arithmeticity vs. nonlinearity alternative for irreducible lattices in suitable product groups, for instance products of topologically simple groups. This applies notably to a (large class of) Kac–Moody groups. The alternative relies heavily on the superrigidity theorem we propose since we follow Margulis’ reduction of arithmeticity to superrigidity.

Keywords

arithmeticity linear representations lattices Kac–Moody groups 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Margulis, G.A. 1991Discrete Subgroups of Semisimple Lie GroupsSpringer-VerlagBerlinGoogle Scholar
  2. 2.
    Monod N. (2003). Superrigidity for irreducible lattices and geometric splitting, PreprintGoogle Scholar
  3. 3.
    Burger, M., Mozes, S. 2001Groups acting on trees: from local to global structureInst. Hautes études Sci. Publ. Math.92113150Google Scholar
  4. 4.
    Burger, M., Mozes, S. 2001Lattices in product of trees, InstHautes études Sci. Publ. Math.92151194Google Scholar
  5. 5.
    Rémy B.(2002). Groupes de K ac– M oody déployés et presque déployés. Astérisque. 277: viii+348Google Scholar
  6. 6.
    Rémy B. (2002). Classical and non-linearity properties of K ac– M oody lattices, In Rigidity in Dynamics and Geometry. (Cambridge, 2000), Springer, BerlinGoogle Scholar
  7. 7.
    Rémy B. (2003). Topological simplicity, commensurator super-rigidity and non-linearities of K ac- M oody groups, with an appendix by P. B onvinGoogle Scholar
  8. 8.
    Rémy B. (2003). Kac-Moody groups as discrete groups, PreprintGoogle Scholar
  9. 9.
    Carbone, L., Garland, H. 1999Lattices in Kac–Moody groupsMath. Res. Lett.6439447Google Scholar
  10. 10.
    Shalom, Y. 2000Rigidity of commensurators and irreducible latticesInvent. Math.141154CrossRefGoogle Scholar
  11. 11.
    Pink, R. 1998Compact subgroups of linear algebraic groupsJ. Algebra.206438504CrossRefGoogle Scholar
  12. 12.
    Burger M., Mozes S., Zimmer R.J. (2004). Linear representations and arithmeticity for lattices in products of trees, PreprintGoogle Scholar
  13. 13.
    Mozes, S.: Products of trees, lattices and simple groups In Proc. Internat. Congress of Mathematicians, Vol. II (Berlin, 1998) , number Extra Vol. II, 1998, pp. 571–582 (electronic)Google Scholar
  14. 14.
    Bader U., Shalom Y. (2003). Factor and normal subgroup theorems for lattices in products of groups, PreprintGoogle Scholar
  15. 15.
    Margulis, G. A.: Superrigidity for commensurability subgroups and generalized harmonic maps, Unpublished manuscriptGoogle Scholar
  16. 16.
    A’Campo, N., Burger, M. 1994Réseaux arithmétiques et commensurateur d’après GA Margulis. Invent. Math.116125CrossRefGoogle Scholar
  17. 17.
    Burger M.: Rigidity properties of group actions on cat(0)-spaces In Proc. Internat. Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994), Birkhäuser, Basel, 1995, pp. 761–769Google Scholar
  18. 18.
    Hochschild, G.P. 1981Basic Theory of Algebraic Groups and Lie Algebras. Grad. Texts in Math. 75Springer-VerlagNew YorkGoogle Scholar
  19. 19.
    Raghunathan, M.S. 1972Discrete Subgroups of Lie Groups. Ergeb. Math. Grenzgeb. 68Springer-VerlagNew YorkGoogle Scholar
  20. 20.
    Rémy B. (2004). Integrability of induction cocycles for K ac- M oody groups. PreprintGoogle Scholar
  21. 21.
    Dymara, J., Januszkiewicz, T. 2002Cohomology of buildings and their automorphism groupsInvent. Math.150579627CrossRefGoogle Scholar
  22. 22.
    Borel, A., Tits, J. 1973Homomorphismes “abstraits” de groupes algébriques simplesAnn. of Math. (2)97499571Google Scholar
  23. 23.
    Venkataramana, T.N. 1988On superrigidity and arithmeticity of lattices in semisimple groups over local fields of arbitrary characteristicInvent. Math.92255306CrossRefGoogle Scholar
  24. 24.
    Tits, J. 1964Algebraic and abstract simple groupsAnn. of Math. (2)80313329Google Scholar
  25. 25.
    Bekka, M.E.B. 1998On uniqueness of invariant meansProc. Amer. Math. Soc.126507514CrossRefGoogle Scholar
  26. 26.
    Montgomery, D., Zippin, L. 1955Topological Transformation GroupsInterscienceNew YorkGoogle Scholar
  27. 27.
    Borel, A., Tits, J. 1965Groupes réductifsInst. Hautes études Sci. Publ. Math.2755150Google Scholar
  28. 28.
    Borel, A., Tits, J. 1972Compléments à l’article: ‘Groupes réductifs’Inst. Hautes études Sci. Publ. Math.41253276Google Scholar
  29. 29.
    Platonov, V. and Rapinchuk, A.: Algebraic Groups and Number Theory , Pure Appl. Math. 139, Academic Press, Boston, MA, 1994. Translated from the 1991 Russian original by Rachel RowenGoogle Scholar
  30. 30.
    Breuillard, E. and Gelander, T.: A topological Tits alternative, Preprint, 2004Google Scholar
  31. 31.
    Vinberg, è. B Lie Groups and L ie Algebras, III , Encyclop Math. Sci., Springer-Verlag, Berlin, 1994 Structure of Lie groups and Lie algebras, A translation of Current Problems in Mathematics. Fundamental Directions. Vol. 41 (Russian), Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1990 [MR 91b:22001], Translation by Viktor Minachin, Translation edited by Arkady L. Onishchik and èrnest. B. VinbergGoogle Scholar
  32. 32.
    Knapp, A. W.: Structure theory of semisimple Lie groups, In: Representation Theory and Automorphic Forms (Edinburgh, 1996) , Proc. Sympos. Pure Math. 61 , Amer. Math Soc., Providence, RI, 1997, pp. 1–27Google Scholar
  33. 33.
    Prasad, G. 1982Elementary proof of a theorem of B ruhat– T its– R ousseau and of a theorem of Tits, BullSoc. Math. France.110197202Google Scholar
  34. 34.
    Bourbaki N. (1971). éléments de mathématique. Topologie générale Chapitres 1 à 4 , Hermann, ParisGoogle Scholar
  35. 35.
    Yamabe, H. 1950On an arcwise connected subgroup of a Lie groupOsaka Math. J.21314Google Scholar
  36. 36.
    Goto, M. 1969On an arcwise connected subgroup of a Lie groupProc. Amer. Math. Soc.2057162Google Scholar
  37. 37.
    Mal’cev, A.I. 1945On the theory of the L ie groups in the largeRec. Math. [Mat. Sbornik] N.S.16163190Google Scholar
  38. 38.
    Mal’cev, A.I. 1946Corrections to the paper “ O n the theory of the Lie groups in the large”Rec. Math. [Mat Sbornik] N.S.19523524Google Scholar
  39. 39.
    Mostow, G.D. 1950The extensibility of local L ie groups of transformations and groups on surfacesAnn. of Math. (2)52606636Google Scholar
  40. 40.
    Mal’cev, A.I. 1940On isomorphic matrix representations of infinite groupsRec. Math. [Mat. Sbornik] N.S.8405422Google Scholar
  41. 41.
    Monod N. (2005). Superrigidity for irreducible lattices and geometric splitting, C.R. Acad. Sci. Paris. Ser. IGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of ChicagoChicagoU.S.A

Personalised recommendations