Geometriae Dedicata

, Volume 111, Issue 1, pp 65–86

Contact and Conformal Maps in

Parabolic Geometry. I
  • Michael Cowling
  • Filippo De Mari
  • Adam Korányi
  • Hans Martin Reimann
Article

Abstract

When \(n \geqslant 3,\) the action of the conformal group O(1, n+1) on \({\mathbb R}^n \cup\{\infty\}\) may be characterized in simple differential geometric terms, even locally: a theorem of Liouville states that a C4 map between domains \({\cal U}\) and \({\cal V}\) in \({\mathbb R}^n\) whose differential is a (variable) multiple of a (variable) isometry at each point of \({\cal U}\) is the restriction to \({\cal U}\) of a transformation xg·x, for some g in O(1,n+1). In this paper, we consider the problem of characterizing the action of a more general semisimple Lie group G on the space G/P, where P is a minimal parabolic subgroup.

Mathematics Subject Classifications (2000)

53C30 53A30 57S20 

Keywords

semisimple Lie group contact map conformal map 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bertram, W. 1996Un théorème de Liouville pour les algèbres de JordanBull. Soc. Mat. France124299327Google Scholar
  2. 2.
    Bertram, W. 2000The Geometry of Jordan and Lie Structures. Lecture Notes in Math. 1754Springer-VerlagBerlinGoogle Scholar
  3. 3.
    Bertram, W., Hilgert, J. 2001Characterization of the Kantor–Koecher–Tits algebra by a generalized Ahlfors operatorJ. Lie Theory11415426Google Scholar
  4. 4.
    Capogna, L. 1999Regularity for quasilinear equations and 1-quasiconformal maps in Carnot groupsMath. Ann.313263295CrossRefGoogle Scholar
  5. 5.
    Capogna, L. and Cowling M.: l-Quasiconformal maps in Carnot groups, Preprint.Google Scholar
  6. 6.
    Cowling, M., Dooley, A. H., Korányi, A., Ricci, F. 1991H-type groups and Iwasawa decompositionsAdv. Math.87141CrossRefGoogle Scholar
  7. 7.
    Cowling, M., De Mari, F., Korányi, A., Reimann, H. M. 2002Contact and conformal maps on Iwasawa N groupsRend. Mat. Acad. Lincei13219232Google Scholar
  8. 8.
    Gehring, F. W. 1962Rings and quasiconformal mappings in spaceTrans. Amer. Math. Soc.103353393Google Scholar
  9. 9.
    Gindikin, S., Kaneyuki, S. 1998On the automorphism group of the generalized conformal structure of a symmetric R-space. Differential GeomAppl.82133Google Scholar
  10. 10.
    Goncharov, A. B. 1987Generalized conformal structures on manifoldsSelected translations. Selecta Math. Soviet.6307340Google Scholar
  11. 11.
    Knapp, A. 1996Lie Groups Beyond an Introduction. Progr. in Math. 140BirkhäuserBaselGoogle Scholar
  12. 12.
    Korányi, A. 1985Geometric properties of Heisenberg-type groupsAdv. Math.562838CrossRefGoogle Scholar
  13. 13.
    Korányi, A., Reimann, H. M. 1985Quasiconformal mappings on the Heisenberg groupInvent. Math.80309338CrossRefGoogle Scholar
  14. 14.
    Kostant, B. 1961Lie algebra cohomology and the generalized Borel–Weil theoremAnn. Math.74329387Google Scholar
  15. 15.
    Kostant, B.: On the existence and irreducibility of a certain series of representations, In: Proc. Summer School. Bolyai János Math. Soc. Budapest 1971, Halsted, New York, 1975, pp. 231–329.Google Scholar
  16. 16.
    Nevanlinna, R.: On differentiable mappings, In: R. Nevanlinna et al. (eds). Analytic Functions, Princeton Math. Ser. 24, Princeton University Press, Princeton, 1960, pp. 3–9.Google Scholar
  17. 17.
    Pansu, P. 1989Métriques de Carnot Carathéodory et quasiisométries des espaces symétriques de rang unAnn. of Math.129160Google Scholar
  18. 18.
    Reimann, H. M. 2001Rigidity of H-type groupsMath. Z.237697725Google Scholar
  19. 19.
    Tanaka, N. 1970On differential systems, graded Lie algebras and pseudogroupsJ. Math. Kyoto Univ.10182Google Scholar
  20. 20.
    Tanaka, N. 1979On the equivalence problem associated with simple graded Lie algebrasHokkaido Math. J.82384Google Scholar
  21. 21.
    Tang, P. 1996Quasiconformal homeomorphisms on CR 3-manifolds: regularity and extremalityAnn. Acad. Sci. Fenn.21289308Google Scholar
  22. 22.
    Yamaguchi K. (1993) Differential systems associated with simple graded Lie algebras, In: Progress in Differential Geometry, Adv. Stud. Pure Math. 22, Math. Soc. Japan, Tokyo, 1993, pp. 413–494.Google Scholar
  23. 23.
    Wallach, N.: Real Reductive Groups I. Pure Appl. Math. 132. Academic Press, Boston, 1988.Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Michael Cowling
    • 1
  • Filippo De Mari
    • 2
  • Adam Korányi
    • 3
  • Hans Martin Reimann
    • 4
  1. 1.School of MathematicsUniversity of New South WalesUNSW SydneyAustralia
  2. 2.DIPEMUniversità di GenovaGenovaItaly
  3. 3.Department of Mathematics and Computer ScienceLehman CollegeBronxU.S.A
  4. 4.Mathematisches InstitutUniversität BernBernSwitzerland

Personalised recommendations