Geometriae Dedicata

, Volume 109, Issue 1, pp 7–30 | Cite as

Compact Homogeneous Einstein 7-Manifolds

  • YU. G. Nikonorov


This paper is devoted to the classification of seven-dimensional homogeneous Einstein manifolds with positive scalar curvature.


Riemannian manifolds homogeneous spaces Einstein metrics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jensen, G 1969Homogeneous Einstein spaces of dimension 4J. Differential Geom3309349Google Scholar
  2. 2.
    Alekseevsky, D.V, Dotti, I, Ferraris, C 1996Homogeneous Ricci positive 5-manifoldsPacific J. Math175112Google Scholar
  3. 3.
    Wang, M., Ziller, W 1990Einstein metrics on principal torus bundlesJ. Differential Geom.31215248Google Scholar
  4. 4.
    Rodionov, E.D 1991Einstein metrics on a class of 5-dimensional homogeneous spacesComm. Math. Univ. Carolinae32389393Google Scholar
  5. 5.
    Rodionov, E.D. 1994Simply connected compact five-dimensional homogeneous Einstein manifoldsSiberian Math. J.35163168Google Scholar
  6. 6.
    Alekseevsky, D.V 1975Homogeneous Riemannian space of negative curvatureMath. USSR- Sb.9693117Google Scholar
  7. 7.
    Nikonorov, Yu.G., Rodionov, E.D 1999Compact 6-dimensional homogeneous Einstein manifoldsDokl. Math. RAS336599601Google Scholar
  8. 8.
    Nikonorov, Yu.G., Rodionov, E.D 2003Compact homogeneous Einstein 6-manifoldsDifferential Geom. Appl.19369378CrossRefGoogle Scholar
  9. 9.
    Jensen, G 1973Einstein metrics on principal fibre bundlesJ. Differential Geom.8599614Google Scholar
  10. 10.
    Kobayashi, S 1963Topology of positively pinched Kä hler manifoldsTohoku Math. J.15121139Google Scholar
  11. 11.
    Wang, M 1982Some examples of homogeneous Einstein manifolds in dimension sevenDuke Math. J.492328CrossRefGoogle Scholar
  12. 12.
    Castellani, L., Romans, L.J 1984N = 3 and N = 1 supersymmetry in a new class of solutions for D = 11 supergravityNuclear Phys. B.241683701CrossRefGoogle Scholar
  13. 13.
    Page, D., Pope, C 1984New squashed solutions of d = 11 supergravityPhys. Lett. B1475560CrossRefGoogle Scholar
  14. 14.
    Castellani, , D’Auria, L.R., Fre, P. 1984SU(3)ΘSU(2)ΘU(1)for D = 11 supergravityNuclear Phys. B239610652CrossRefGoogle Scholar
  15. 15.
    D’Auria, R., Fre, P., Nieuwenhuisen, P 1984N = 2 matter coupled supergravity from compactification on a coset G=H possessing an additional Killing vectorPhys. Lett. B136347353CrossRefGoogle Scholar
  16. 16.
    Castellani, L., Romans, L.J., Warner, N.P 1984A classification of compactifying solutions for d = 11 supergravityNuclear Phys. B241429462CrossRefGoogle Scholar
  17. 17.
    C. Bo¨ hm and Kerr, M. Low-dimensional homogeneous Einstein manifolds, Preprint (2002).Google Scholar
  18. 18.
    Besse, A.: Einstein Manifolds, Ergeb. Math. Grenzgeb. (3). 10, Springer-Verlag, Berlin, 1987.Google Scholar
  19. 19.
    Dynkin, E.B 1957Semisimple subalgebras of semisimple Lie algebrasTransl Amer. Math. Soc.2111244Google Scholar
  20. 20.
    Dynkin, E.B. 1957Maximal subgroups of the classical groupsTransl. Amer. Math. Soc.6245378Google Scholar
  21. 21.
    Ziller, W 1982Homogeneous Einstein metrics on spheres and projective spacesMath. Ann.259351358CrossRefGoogle Scholar
  22. 22.
    Back, A., Hsiang, W.Y 1987Equivariant geometry and Kervaire spheresTrans. Amer. Math. Soc.304207227Google Scholar
  23. 23.
    Kerr, M 1998New examples of homogeneous Einstein metricsMichigan J. Math.45115134CrossRefGoogle Scholar
  24. 24.
    Kreck, M., Stolz, S 1988A diffeomorphism classification on 7-dimensional Einstein manifolds with SU(3)ΘSU(2)ΘU(1) symmetryAnn. Math.127373388Google Scholar
  25. 25.
    Klaus, S 1988Einfach-zusammenhängenge Kompakte Homogene Räume bis zur Dimension NeunDiplomarbeit am Fachbereich MatthematikJohannes Gutenberg Universitä tGoogle Scholar
  26. 26.
    Rodionov, E.D 1992On a new family of homogeneous Einstein manifoldsArch. Math. (Brno)28199204Google Scholar
  27. 27.
    Aloff, S., Wallach, N 1975An infinite family of distinct 7-manifolds admitting positively curved Riemannian structuresBull. Amer. Math. Soc.819397Google Scholar
  28. 28.
    Kreck, M., Stolz, S 1991Some nondiffeomorphic homeomorphic 7-manifolds with positive sectional curvatureJ. Differential Geom.33465468Google Scholar
  29. 29.
    Kowalski, O., Vlasek, Z 1993Homogeneous Einstein metrics on Aloff–Wallach spacesDifferential Geom. Ally.3157167CrossRefGoogle Scholar
  30. 30.
    Cabrera, F.M., Monar, M.D., Swann, A 1996Classification of G2-structuresJ. London Math. Soc.53407416Google Scholar
  31. 31.
    Wang, M., Ziller, W 1986Existence and non-existence of homogeneous Einstein metricsInvent. Math.84177194CrossRefGoogle Scholar
  32. 32.
    Bredon, G.E 1972Introduction to Compact Transformation GroupsAcademic PressNew YorkGoogle Scholar
  33. 33.
    Boyer, C., Galicki, K., Mann, B 1994The geometry and topology of 3-Sasakian manifoldsJ. Reine Angew. Math.455183220Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  1. 1.Rubtsovsk industrial instituteRubtsovskRussia

Personalised recommendations