Advertisement

Applications of genetic programming to finance and economics: past, present, future

  • Anthony Brabazon
  • Michael KampouridisEmail author
  • Michael O’Neill
Article
  • 39 Downloads
Part of the following topical collections:
  1. Twentieth Anniversary Issue

Abstract

While the origins of genetic programming (GP) stretch back over 50 years, the field of GP was invigorated by John Koza’s popularisation of the methodology in the 1990s. A particular feature of the GP literature since then has been a strong interest in the application of GP to real-world problem domains. One application domain which has attracted significant attention is that of finance and economics, with several hundred papers from this subfield being listed in the GP bibliography. In this article we outline why finance and economics has been a popular application area for GP and briefly indicate the wide span of this work. However, despite this research effort there is relatively scant evidence of the usage of GP by the mainstream finance community in academia or industry. We speculate why this may be the case, describe what is needed to make this research more relevant from a finance perspective, and suggest some future directions for the application of GP in finance and economics.

Keywords

Finance Economics Quantitative trading Genetic programming 

Notes

References

  1. 1.
    A. Adegboye, M. Kampouridis, C.G. Johnson, Regression genetic programming for estimating trend end in foreign exchange market, in 2017 IEEE Symposium Series on Computational Intelligence (SSCI) (2017)Google Scholar
  2. 2.
    A. Agapitos, M. O’Neill, A. Brabazon, Evolutionary learning of technical trading rules without data-mining bias, in Parallel Problem Solving from Nature, PPSN XI, ed. by R. Schaefer, C. Cotta, J. Kołodziej, G. Rudolph (Springer, Berlin, 2010), pp. 294–303Google Scholar
  3. 3.
    A. Agapitos, M. O’Neill, A. Brabazon, Evolving seasonal forecasting models with genetic programming in the context of pricing weather-derivatives, in Applications of Evolutionary Computation, ed. by C. Di Chio (Springer, Berlin, 2012), pp. 135–144CrossRefGoogle Scholar
  4. 4.
    A. Agapitos, M. O’Neill, A. Brabazon, Genetic Programming for the Induction of Seasonal Forecasts: A Study on Weather Derivatives (Springer, New York, 2012), pp. 159–188Google Scholar
  5. 5.
    A.K. Alexandridis, M. Kampouridis, S. Cramer, A comparison of wavelet networks and genetic programming in the context of temperature derivatives. Int. J. Forecast. 33(1), 21–47 (2017)CrossRefGoogle Scholar
  6. 6.
    B. Alexandrova-Kabadjova, E. Tsang, A. Krause, Evolutionary Learning of the Optimal Pricing Strategy in an Artificial Payment Card Market (Springer, Berlin, 2008), pp. 233–251zbMATHGoogle Scholar
  7. 7.
    F. Allen, R. Karjalainen, Using genetic algorithms to find technical trading rules. J. Financ. Econ. 51, 245–271 (1999)CrossRefGoogle Scholar
  8. 8.
    A. Bakhach, E.P.K. Tsang, H. Jalalian, Forecasting directional changes in the fx markets, in 2016 IEEE Symposium Series on Computational Intelligence (SSCI) (2016), pp. 1–8Google Scholar
  9. 9.
    R. Bauer, Genetic Algorithms and Investment Strategies (Wiley, New York, 1994)Google Scholar
  10. 10.
    A. Bazghandi, Techniques, advantages and problems of agent based modeling for traffic simulation. Int. J. Comput. Sci. Issues 9(3), 115–119 (2012)Google Scholar
  11. 11.
    Y.L. Becker, P. Fei, A. Lester, Stock Selection: An Innovative Application of Genetic Programming Methodology. Genetic Programming Theory and Practice IV (Springer, Berlin, 2017)Google Scholar
  12. 12.
    Y.L. Becker, H. Fox, P. Fei, An Empirical Study of Multi-objective Algorithms for Stock Ranking (Springer, Boston, 2008), pp. 239–259zbMATHGoogle Scholar
  13. 13.
    Y.L. Becker, U.M. O’Reilly, Genetic programming for quantitative stock selection, in Proceedings of the First ACM/SIGEVO Summit on Genetic and Evolutionary Computation, GEC ’09 (ACM, New York, 2009), pp. 9–16Google Scholar
  14. 14.
    T. Berg, V. Burg, A. Gombovic, M. Puri, On the rise of fintechs—credit scoring using digital footprints (July 10, 2018). Available at SSRN: https://ssrn.com/abstract=3163781 or http://dx.doi.org/10.2139/ssrn.3163781
  15. 15.
    F. Black, M. Scholes, The pricing of options and corporate liabilities. J. Polit. Econ. 81(3), 637–654 (1973)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    A. Brabazon, J. Dang, I. Dempsey, M. O’Neill, D. Edelman, Natural Computing in Finance: A Review (Springer, Berlin, 2012), pp. 1707–1735CrossRefGoogle Scholar
  17. 17.
    A. Brabazon, M. O’Neill, Biologically Inspired Algorithms for Financial Modelling (Springer, Berlin, 2006)zbMATHGoogle Scholar
  18. 18.
    R. Bradley, A. Brabazon, M. O’Neill, Objective function design in a grammatical evolutionary trading system, in 2010 IEEE World Congress on Computational Intelligence (IEEE Press, Washington, DC, 2010), pp. 3487–3494Google Scholar
  19. 19.
    S.H. Chen, Varieties of agents in agent-based computational economics: a historical and an interdisciplinary perspective. J. Econ. Dyn. Control 36(1), 1–25 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    S.H. Chen, C.L. Chang, Y.R. Du, Agent-based economic models and econometrics. Knowl. Eng. Rev. 27(2), 187–219 (2012)CrossRefGoogle Scholar
  21. 21.
    S.H. Chen, T.W. Kuo, Evolutionary Computation in Economics and Finance: A Bibliography (Physica-Verlag, Heidelberg, 2002), pp. 419–455CrossRefGoogle Scholar
  22. 22.
    S.H. Chen, C.H. Yeh, Evolving traders and the business school with genetic programming: a new architecture of the agent-based artificial stock market. J. Econ. Dyn. Control 25(3), 363–393 (2001). Agent-based Computational Economics (ACE)zbMATHCrossRefGoogle Scholar
  23. 23.
    S.H. Chen, C.H. Yeh, W.C. Lee, Option pricing with genetic programming, in Genetic Programming 1998: Proceedings of the Third Annual Conference, ed. by J.R. Koza, W. Banzhaf, K. Chellapilla, K. Deb, M. Dorigo, D.B. Fogel, M.H. Garzon, D.E. Goldberg, H. Iba, R. Riolo (Morgan Kaufmann, Burlington, 1998), pp. 32–37Google Scholar
  24. 24.
    N. Chidambaran, J. Triqueros, C.W.J. Lee, Option Pricing via Genetic Programming (Physica-Verlag, Heidelberg, 2002), pp. 383–397Google Scholar
  25. 25.
    I. Contreras, J.I. Hidalgo, L. Nuñez-Letamendía, J.M. Velasco, A meta-grammatical evolutionary process for portfolio selection and trading. Genet. Program. Evol. Mach. 18(4), 411–431 (2017)CrossRefGoogle Scholar
  26. 26.
    J.C. Cox, S.A. Ross, M. Rubinstein, Option pricing: a simplified approach. J. Financ. Econ. 7(3), 229–263 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    S. Cramer, M. Kampouridis, A.A. Freitas, Decomposition genetic programming: an extensive evaluation on rainfall prediction in the context of weather derivatives. Appl. Soft Comput. 70, 208–224 (2018)CrossRefGoogle Scholar
  28. 28.
    S. Cramer, M. Kampouridis, A.A. Freitas, A. Alexandridis, Predicting rainfall in the context of rainfall derivatives using genetic programming, in 2015 IEEE Symposium Series on Computational Intelligence (2015), pp. 711–718Google Scholar
  29. 29.
    S. Cramer, M. Kampouridis, A.A. Freitas, A. Alexandridis, Pricing rainfall based futures using genetic programming, in 20th European Conference, EvoApplications: European Conference on the Applications of Evolutionary Computation, vol. 10199 (Springer, Berlin, 2017), pp. 17–33Google Scholar
  30. 30.
    S. Cramer, M. Kampouridis, A.A. Freitas, A. Alexandridis, Stochastic model genetic programming: deriving pricing equations for rainfall weather derivatives. Swarm Evolut. Comput. 46, 184–200 (2019)CrossRefGoogle Scholar
  31. 31.
    S. Cramer, M. Kampouridis, A.A. Freitas, A.K. Alexandridis, An extensive evaluation of seven machine learning methods for rainfall prediction in weather derivatives. Expert Syst. Appl. 85, 169–181 (2017)CrossRefGoogle Scholar
  32. 32.
    W. Cui, A. Brabazon, M. O’Neill, Evolving dynamic trade execution strategies using grammatical evolution, in Applications of Evolutionary Computation, ed. by C. Di Chio (Springer, Berlin, 2010), pp. 192–201zbMATHCrossRefGoogle Scholar
  33. 33.
    W. Cui, A. Brabazon, M. O’Neill, Evolving efficient limit order strategy using grammatical evolution, In IEEE Congress on Evolutionary Computation (2010), pp. 1–6Google Scholar
  34. 34.
    W. Cui, A. Brabazon, M. O’Neill, Adaptive trade execution using a grammatical evolution approach. Int. J. Financ. Mark. Deriv. 2(1/2), 4–31 (2011)Google Scholar
  35. 35.
    G. Deboeck, Trading on the Edge: Neural, Genetic, and Fuzzy Systems for Chaotic Financial Markets (Wiley, New York, 1994)Google Scholar
  36. 36.
    M.A.H. Dempster, C.M. Jones, A real-time adaptive trading system using genetic programming. Quant. Finance 1(4), 397–413 (2001)zbMATHCrossRefGoogle Scholar
  37. 37.
    S. Ecca, M. Marchesi, A. Setzu, Modeling and simulation of an artificial stock option market. Comput. Econ. 32(1), 37–53 (2008)zbMATHCrossRefGoogle Scholar
  38. 38.
    G.P.C. Fung, J.X. Yu, W. Lam, Stock prediction: integrating text mining approach using real-time news. In 2003 IEEE International Conference on Computational Intelligence for Financial Engineering, 2003. Proceedings (2003), pp. 395–402Google Scholar
  39. 39.
    D.K. Gode, S. Sunder, Allocative efficiency of markets with zero-intelligence traders: market as a partial substitute for individual rationality. J. Polit. Econ. 101(1), 119–137 (1993)CrossRefGoogle Scholar
  40. 40.
    C. Grosan, A. Abraham, Stock market modeling using genetic programming ensembles, in Genetic Systems Programming: Theory and Experiences, ed. by N. Nedjah, L.M. Mourelle, A. Abraham (Springer, Berlin, 2006), pp. 131–146.  https://doi.org/10.1007/3-540-32498-4_6
  41. 41.
    J. Gypteau, F.E.B. Otero, M. Kampouridis, Generating directional change based trading strategies with genetic programming, in Applications of Evolutionary Computation, ed. by A.M. Mora, G. Squillero (Springer, Berlin, 2015), pp. 267–278Google Scholar
  42. 42.
    E. Hemberg, J. Rosen, G. Warner, S. Wijesinghe, U.M. O’Reilly, Tax non-compliance detection using co-evolution of tax evasion risk and audit likelihood, in Proceedings of the 15th International Conference on Artificial Intelligence and Law, ICAIL ’15 (ACM, New York, 2015), pp. 79–88Google Scholar
  43. 43.
    E. Hemberg, J. Rosen, G. Warner, S. Wijesinghe, U.M. O’Reilly, Detecting tax evasion: a co-evolutionary approach. Artif. Intell. Law 24(2), 149–182 (2016)CrossRefGoogle Scholar
  44. 44.
    H. Iba, T. Sasaki, Using genetic programming to predict financial data, in Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), vol. 1 (1999), pp. 244–251Google Scholar
  45. 45.
    K. Izumi, An artificial market model of a foreign exchange market. PhD dissertation, Tokyo University (1999)Google Scholar
  46. 46.
    M.A. Kaboudan, Genetic programming prediction of stock prices. Comput. Econ. 16(3), 207–236 (2000)zbMATHCrossRefGoogle Scholar
  47. 47.
    M. Kampouridis, A. Alsheddy, E. Tsang, On the investigation of hyper-heuristics on a financial forecasting problem. Ann. Math. Artif. Intell. 68(4), 225–246 (2013)MathSciNetCrossRefGoogle Scholar
  48. 48.
    M. Kampouridis, S.H. Chen, E. Tsang, Market fraction hypothesis: a proposed test. Int. Rev. Financ. Anal. 23, 41–54 (2012)CrossRefGoogle Scholar
  49. 49.
    M. Kampouridis, F.E. Otero, Evolving trading strategies using directional changes. Expert Syst. Appl. 73, 145–160 (2017)CrossRefGoogle Scholar
  50. 50.
    M. Kampouridis, F.E.B. Otero, Heuristic procedures for improving the predictability of a genetic programming financial forecasting algorithm. Soft Comput. 21(2), 295–310 (2015)CrossRefGoogle Scholar
  51. 51.
    M. Kampouridis, E. Tsang, Investment opportunities forecasting: extending the grammar of a GP-based tool. Int. J. Comput. Intell. Syst. 5(3), 530–541 (2012)CrossRefGoogle Scholar
  52. 52.
    M. Kolanovic, R.T. Krishnamachari, Big data and AI strategies: machine learning and alternative data approach to investing. J. P. Morgan Report (2018)Google Scholar
  53. 53.
    J.R. Koza, Genetic programming: a paradigm for genetically breeding populations of computer programs to solve problems. Technical report, Stanford, CA, USA (1990)Google Scholar
  54. 54.
    J.R. Koza, A genetic approach to econometric modeling, in Economics and Cognitive Science, ed. by P. Bourgine, B. Walliser (Pergamon Press, Cambridge, 1992), pp. 57–75CrossRefGoogle Scholar
  55. 55.
    J.R. Koza, Genetic Programming: On the Programming of Computers by Means of Natural Selection (MIT Press, Cambridge, 1992)zbMATHGoogle Scholar
  56. 56.
    W.B. Langdon, S.M. Gustafson, Genetic programming and evolvable machines: ten years of reviews. Genet. Program. Evol. Mach. 11(3), 321–338 (2010)CrossRefGoogle Scholar
  57. 57.
    F. Larkin, C. Ryan, Good news: using news feeds with genetic programming to predict stock prices, in Genetic Programming, ed. by M. O’Neill (Springer, Berlin, 2008), pp. 49–60CrossRefGoogle Scholar
  58. 58.
    T. Lensberg, A. Eilifsen, T.E. McKee, Bankruptcy theory development and classification via genetic programming. Eur. J. Oper. Res. 169(2), 677–697 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  59. 59.
    S. Martinez-Jaramillo, E.P.K. Tsang, An heterogeneous, endogenous and coevolutionary GP-based financial market. IEEE Trans. Evol. Comput. 13(1), 33–55 (2009)CrossRefGoogle Scholar
  60. 60.
    R.C. Merton, Theory of rational option pricing. Bell J. Econ. Manag. Sci. 4(1), 141–183 (1973)MathSciNetzbMATHCrossRefGoogle Scholar
  61. 61.
    C. Neely, P. Weller, R. Dittmar, Is technical analysis in the foreign exchange market profitable? A genetic programming approach. J. Financ. Quant. Anal. 32(4), 405–426 (1997)CrossRefGoogle Scholar
  62. 62.
    N.Y. Nikolaev, H. Iba, Genetic programming of polynomial models for financial forecasting, in Genetic Algorithms and Genetic Programming in Computational Finance, Chap. 5, ed. by S.H. Chen (Kluwer Academic Press, Dordrecht, 2002), pp. 103–123CrossRefGoogle Scholar
  63. 63.
    M. O’Neill, L. Vanneschi, S. Gustafson, W. Banzhaf, Open issues in genetic programming. Genet. Program. Evol. Mach. 11(3), 339–363 (2010)CrossRefGoogle Scholar
  64. 64.
    C.S. Ong, J.J. Huang, G.H. Tzeng, Building credit scoring models using genetic programming. Expert Syst. Appl. 29(1), 41–47 (2005)CrossRefGoogle Scholar
  65. 65.
    S. Salcedo-Sanz, J.L. Fernandez-Villacanas, M.J. Segovia-Varge, C. Bousono-Calzon, Genetic programming for the prediction of insolvency in non-life insurance companies. Comput. Oper. Res. 32(4), 749–765 (2005)zbMATHCrossRefGoogle Scholar
  66. 66.
    A. Samitas, S. Polyzos, C. Siriopoulos, Brexit and financial stability: an agent-based simulation. Econ. Model. 69, 181–192 (2018)CrossRefGoogle Scholar
  67. 67.
    H. Schmidbauer, A. Rösch, T. Sezer, V.S. Tunalioğlu, Robust trading rule selection and forecasting accuracy. J. Syst. Sci. Complex. 27(1), 169–180 (2014)zbMATHCrossRefGoogle Scholar
  68. 68.
    K. Sörensen, Metaheuristics—the metaphor exposed. Int. Trans. Oper. Res. 22(1), 3–18 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  69. 69.
    E. Tsang, J. Chen, Regime change detection using directional change indicators in the foreign exchange market to chart brexit. IEEE Trans. Emerg. Topics Comput. Intell. 2(3), 185–193 (2018)CrossRefGoogle Scholar
  70. 70.
    E.P.K. Tsang, R. Tao, A. Serguieva, S. Ma, Profiling high-frequency equity price movements in directional changes. Quant. Finance 17(2), 217–225 (2017).  https://doi.org/10.1080/14697688.2016.1164887 MathSciNetzbMATHCrossRefGoogle Scholar
  71. 71.
    C. Tuite, M. O’Neill, A. Brabazon, Economic and financial modeling with genetic programming, in The Oxford Handbook of Computational Economics and Finance, Chapter 8, ed. by S.H. Chen, M. Kaboudan, Y.R. Du (Oxford Handbooks Online, Oxford, 2018), pp. 267–289Google Scholar
  72. 72.
    N. Wagner, Z. Michalewicz, M. Khouja, R.R. McGregor, Time series forecasting for dynamic environments: the dyfor genetic program model. IEEE Trans. Evol. Comput. 11(4), 433–452 (2007)CrossRefGoogle Scholar
  73. 73.
    P.A. Whigham, R. Withanawasam, Evolving a robust trader in a cyclic double auction market, in Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, GECCO ’11 (ACM, New York, 2011), pp. 1451–1458Google Scholar
  74. 74.
    H. White, A reality check for data snooping. Econometrica 68(5), 1097–1126 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  75. 75.
    W. Yan, C.D. Clack, Evolving robust GP solutions for hedge fund stock selection in emerging markets. Soft. Comput. 15(1), 37–50 (2011)CrossRefGoogle Scholar
  76. 76.
    Z. Yin, A. Brabazon, C. O’Sullivan, Adaptive genetic programming for option pricing, in Proceedings of the 9th Annual Conference Companion on Genetic and Evolutionary Computation, GECCO ’07 (ACM, New York, 2007), pp. 2588–2594Google Scholar
  77. 77.
    Z. Yin, A. Brabazon, C. O’Sullivan, P.A. Hamill, A genetic programming approach for delta hedging. Genet. Program. Evol. Mach. 20(1), 67–92 (2019)CrossRefGoogle Scholar
  78. 78.
    Z. Yin, A. Brabazon, C. O’Sullivan, M. O’Neill, A genetic programming approach for delta hedging, in 2015 IEEE Congress on Evolutionary Computation (CEC) (2015), pp. 3312–3318Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.University College DublinDublinIreland
  2. 2.University of KentMedwayUK

Personalised recommendations