Genetic Programming and Evolvable Machines

, Volume 18, Issue 3, pp 353–361 | Cite as

On the mapping of genotype to phenotype in evolutionary algorithms

  • Peter A. WhighamEmail author
  • Grant Dick
  • James Maclaurin
Part of the following topical collections:
  1. Mapping of Genotype to Phenotype in Evolutionary Algorithms


Analogies with molecular biology are frequently used to guide the development of artificial evolutionary search. A number of assumptions are made in using such reasoning, chief among these is that evolution in natural systems is an optimal, or at least best available, search mechanism, and that a decoupling of search space from behaviour encourages effective search. In this paper, we explore these assumptions as they relate to evolutionary algorithms, and discuss philosophical foundations from which an effective evolutionary search can be constructed. This framework is used to examine grammatical evolution (GE), a popular search method that draws heavily upon concepts from molecular biology. We identify several properties in GE that are in direct conflict with those that promote effective evolutionary search. The paper concludes with some recommendations for designing representations for effective evolutionary search.


Genetic programming Biological analogy Grammatical evolution Representation 


  1. 1.
    M. Vose, G. Liepins, Schema disruption, in Proceedings of the Fourth International Conference on Genetic Algorithms, ed. by R. Belew, L. Booker (Morgan Kaufmann, University of California, San Diego, 1991), pp. 237–242Google Scholar
  2. 2.
    N. Radcliffe, Non-linear genetic representation, in Parallel Problem Solving from Nature 2, ed. by R. Manner, B. Manderick (Elsevier, Amsterdam, 1992), pp. 259–268Google Scholar
  3. 3.
    D. Fogel, Phenotypes, genotypes and operators in evolutionary computation, in IEEE International Conference on Evolutionary Computation (IEEE, Perth, 1995), pp. 193–198Google Scholar
  4. 4.
    S.J. Gould, R. Lewontin, The Spandrels of San Marco and the Panglossian Paradigm: A Critizue of the Adaptationist Programme. Proc. R. Soc. Lond. B 205, 581–598 (1979)CrossRefGoogle Scholar
  5. 5.
    J. Dupré, The Latest on the Best: Essays on Optimality and Evolution (MIT Press, Cambridge, 1987)Google Scholar
  6. 6.
    R. Dawkins, The Extended Phenotype (Oxford University Press, Oxford, 1982)Google Scholar
  7. 7.
    R. Dawkins, The Extended Phenotype: The Long Reach of the Gene (Oxford University Press, Oxford, 1999)Google Scholar
  8. 8.
    K. Sterelny, Niche construction, developmental systems and the extended replicator, in Cycles of Contingency: Developmental Systems and Evolution, ed. by S. Oyama, R.D. Gray, P.E. Griffiths (MIT Press, Cambridge, 2001)Google Scholar
  9. 9.
    M. Kirschner, J. Gerhart, Evolvability. Proc. Natl. Acad. Sci. 95(15), 8420–8427 (1998)CrossRefGoogle Scholar
  10. 10.
    F. Rothlauf, M. Oetzel, On the Locality of Grammatical Evolution. LNCS 3905, 320–330 (2006)Google Scholar
  11. 11.
    G.P. Wagner, L. Altenberg, Perspective: complex adaptations and the evolution of evolvability. Evolution 50(3), 967–976 (1996)CrossRefGoogle Scholar
  12. 12.
    M.O. Neill, C. Ryan, Grammatical evolution. IEEE Trans. Evol. Comput. 5(4), 349–358 (2001)CrossRefGoogle Scholar
  13. 13.
    A. Brabazon, M. O’Neill, S. McGarraghy, Natural Computing Algorithms (Springer, New York, 2015)CrossRefzbMATHGoogle Scholar
  14. 14.
    M. O’Neill, C. Ryan, Grammatical Evolution: Evolutionary Automatic Programming in an Arbitrary Language (Kluwer, Dordrecht, 2003)CrossRefzbMATHGoogle Scholar
  15. 15.
    P.A. Whigham, G. Dick, J. Maclaurin, C.A. Owen, Examining the “best of both worlds” of grammatical evolution, in Proceedings of the Genetic and Evolutionary Computation (GECCO) Conference (ACM, Madrid, 2015), pp. 1111–1118Google Scholar
  16. 16.
    J. Hugosson, E. Hemberg, A. Brabazon, M. O’Neill, Genotype representations in grammatical evolution. Appl. Soft Comput. 10(1), 36–43 (2010)CrossRefGoogle Scholar
  17. 17.
    C. Ryan, R.M.A. Azad, Sensible initialisation in grammatical evolution, in GECCO 2003: Proceedings of the Bird of a Feather Workshops, Genetic and Evolutionary Computation Conference (AAAI, Chicago, 2003), pp. 142–145Google Scholar
  18. 18.
    J. Byrne, J. McDermott, M. O’Neill, A. Brabazon, An analysis of the behaviour of mutation in grammatical evolution, in EuroGP 2010, ed. by A.I. Esparcia-Alcazar, A. Ekart, S. Silva, S. Dignum, A.S. Uyar (Springer, Berlin, 2010), pp. 14–25Google Scholar
  19. 19.
    J. Byrne, M. O’Neill, A. Brabazon, Structural and nodal mutation in grammatical evolution, in GECCO ‘09: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation (ACM, Montreal, 2009), pp. 1881–1882Google Scholar
  20. 20.
    F. Rothlauf, Representations for Genetic and Evolutionary Algorithms, 2nd edn. (Springer, New York, 2006)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Peter A. Whigham
    • 1
    Email author
  • Grant Dick
    • 1
  • James Maclaurin
    • 2
  1. 1.Department of Information ScienceUniversity of OtagoDunedinNew Zealand
  2. 2.Department of PhilosophyUniversity of OtagoDunedinNew Zealand

Personalised recommendations