Advertisement

Genetic Programming and Evolvable Machines

, Volume 17, Issue 1, pp 55–74 | Cite as

Self-tuning geometric semantic Genetic Programming

  • Mauro CastelliEmail author
  • Luca Manzoni
  • Leonardo Vanneschi
  • Sara Silva
  • Aleš Popovič
Article

Abstract

The process of tuning the parameters that characterize evolutionary algorithms is difficult and can be time consuming. This paper presents a self-tuning algorithm for dynamically updating the crossover and mutation probabilities during a run of genetic programming. The genetic operators that are considered in this work are the geometric semantic genetic operators introduced by Moraglio et al. Differently from other existing self-tuning algorithms, the proposed one works by assigning a (different) crossover and mutation probability to each individual of the population. The experimental results we present show the appropriateness of the proposed self-tuning algorithm: on seven different test problems, the proposed algorithm finds solutions of a quality that is better than, or comparable to, the one achieved using the best known values for the geometric semantic crossover and mutation rates for the same problems. Also, we study how the mutation and crossover probabilities change during the execution of the proposed self-tuning algorithm, pointing out an interesting insight: mutation is basically the only operator used in the exploration phase, while crossover is used for exploitation, further improving good quality solutions.

Keywords

Genetic Programming Semantics Parameters Tuning 

Notes

Acknowledgments

This work was supported by national funds through FCT under contract MassGP (PTDC/EEI-CTP/ 2975/2012), Portugal.

References

  1. 1.
    F. Archetti, S. Lanzeni, E. Messina, L. Vanneschi, Genetic programming for computational pharmacokinetics in drug discovery and development. Genet. Progr. Evol. Mach. 8(4), 413–432 (2007)CrossRefGoogle Scholar
  2. 2.
    T. Bäck, Self-adaptation in genetic algorithms, in Proceedings of the First European Conference on Artificial Life (MIT Press, 1992), pp. 263–271Google Scholar
  3. 3.
    T. Bäck, Optimal mutation rates in genetic search, in Proceedings of the 5th International Conference on Genetic Algorithms (Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1993), pp. 2–8Google Scholar
  4. 4.
    T. Brooks, D. Pope, A. Marcolini, Airfoil self-noise and prediction. Technical report, NASA RP-1218 (1989)Google Scholar
  5. 5.
    M. Castelli, L. Manzoni, L. Vanneschi, Parameter tuning of evolutionary reactions systems, in GECCO ’12: Proceedings of the fourteenth international conference on Genetic and evolutionary computation conference (ACM, Philadelphia, Pennsylvania, USA, 2012), pp. 727–734Google Scholar
  6. 6.
    M. Castelli, L. Vanneschi, S. Silva, Prediction of high performance concrete strength using genetic programming with geometric semantic genetic operators. Expert Syst. Appl. 40(17), 6856–6862 (2013)CrossRefGoogle Scholar
  7. 7.
    M. Castelli, L. Vanneschi, S. Silva, Prediction of the unified parkinson’s disease rating scale assessment using a genetic programming system with geometric semantic genetic operators. Expert Syst. Appl. 41(10), 4608–4616 (2014)CrossRefGoogle Scholar
  8. 8.
    M. Castelli, L. Vanneschi, A. Popovič, Parameter evaluation of geometric semantic genetic programming in pharmacokinetics. Int. J. Bio-Inspir. Comput. 2, 1–10 (2015)Google Scholar
  9. 9.
    L. Davis, Adapting operator probabilities in genetic algorithms, in Proceedings of the Third International Conference on Genetic Algorithms (Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1989), pp. 61–69Google Scholar
  10. 10.
    A. Eiben, R. Hinterding, Z. Michalewicz, Parameter control in evolutionary algorithms. Evol. Comput. IEEE Trans. 3(2), 124–141 (1999)CrossRefGoogle Scholar
  11. 11.
    A. Eiben, Z. Michalewicz, M. Schoenauer, J. Smith, Parameter control in evolutionary algorithms, in Parameter Setting in Evolutionary Algorithms, Studies in Computational Intelligence, vol. 54, ed. by F. Lobo, C. Lima, Z. Michalewicz (Springer, Berlin, 2007), pp. 19–46Google Scholar
  12. 12.
    Y. I-Cheng, Simulation of concrete slump using neural networks. Constr. Mater. 162(1), 11–18 (2009)Google Scholar
  13. 13.
    J.R. Koza, Genetic Programming: On the Programming of Computers by Means of Natural Selection (MIT Press, Cambridge, MA, 1992)zbMATHGoogle Scholar
  14. 14.
    J.R. Koza, Human-competitive results produced by genetic programming. Genet. Progr. Evol. Mach. 11(3–4), 251–284 (2010)CrossRefGoogle Scholar
  15. 15.
    K. Krawiec, P. Lichocki, Approximating geometric crossover in semantic space, in GECCO ’09: Proceedings of the 11th Annual conference on Genetic and evolutionary computation (ACM, Montreal, 2009), pp. 987–994Google Scholar
  16. 16.
    A. Moraglio, A. Mambrini, Runtime analysis of mutation-based geometric semantic genetic programming for basis functions regression, in GECCO ’13: Genetic and Evolutionary Computation Conference (Amsterdam, The Netherlands, 2013) pp. 989–996, 6–10 July 2013Google Scholar
  17. 17.
    A. Moraglio, K. Krawiec , C.G. Johnson, Geometric semantic genetic programming, in Parallel Problem Solving from Nature, PPSN XII (part 1). Lecture Notes in Computer Science, vol. 7491, (Springer, 2012), pp. 21–31Google Scholar
  18. 18.
    A. Moraglio, J. Togelius, S. Silva, Geometric differential evolution for combinatorial and programs spaces. Evolut. Comput. 21(4), 591–624 (2013)CrossRefGoogle Scholar
  19. 19.
    I. Ortigosa , R. Lopez, J. Garcia, A neural networks approach to residuary resistance of sailing yachts prediction, in Proceedings of the International Conference on Marine Engineering MARINE, vol. 2007 (2007), p. 250Google Scholar
  20. 20.
    Z. Ren, H. Jiang, J. Xuan, Z. Luo, Hyper-heuristics with low level parameter adaptation. Evol Comput 20(2), 189–227 (2012)CrossRefGoogle Scholar
  21. 21.
    J. Smith, T. Fogarty, Self adaptation of mutation rates in a steady state genetic algorithm, in Proceedings of IEEE International Conference on Evolutionary Computation, 1996, pp. 318–323Google Scholar
  22. 22.
    C.R. Stephens, I.G. Olmedo, J.M. Vargas, H. Waelbroeck, Self-adaptation in evolving systems. Artif Life 4(2), 183–201 (1998)CrossRefGoogle Scholar
  23. 23.
    A. Tuson, P. Ross, Adapting operator settings in genetic algorithms. Evol. Comput. 6(2), 161–184 (1998)CrossRefGoogle Scholar
  24. 24.
    L. Vanneschi, M. Castelli, L. Manzoni, S. Silva, in A New Implementation of Geometric Semantic GP and its Application to Problems in Pharmacokinetics, eds. by K. Krawiec, A. Moraglio, T. Hu, A.S. Uyar, B. Hu Proceedings of the 16th European Conference on Genetic Programming, EuroGP 2013, Springer, Vienna, Austria, LNCS, vol. 7831, (2013a), pp. 205–216Google Scholar
  25. 25.
    L. Vanneschi, S. Silva, M. Castelli, L. Manzoni, Geometric semantic genetic programming for real life applications, in Genetic Programming Theory and Practice, ed. by R. Riolo, J.H. Moore, M. Kotanchek (Springer, Ann Arbor, 2013b)Google Scholar
  26. 26.
    L. Vanneschi, M. Castelli, S. Silva, A survey of semantic methods in genetic programming. Genet. Progr. Evol. Mach. 15(2), 195–214 (2014)CrossRefGoogle Scholar
  27. 27.
    D. Whitley, S. Dominic, R. Das, C.W. Anderson, Genetic reinforcement learning for neurocontrol problems. Mach. Learn. 13(2–3), 259–284 (1993)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Mauro Castelli
    • 1
    Email author
  • Luca Manzoni
    • 2
  • Leonardo Vanneschi
    • 1
  • Sara Silva
    • 4
  • Aleš Popovič
    • 1
    • 3
  1. 1.NOVA IMSUniversidade Nova de LisboaLisbonPortugal
  2. 2.Dipartimento di Informatica Sistemistica e Comunicazione (DISCo)University of Milano BicoccaMilanItaly
  3. 3.Faculty of EconomicsUniversity of LjubljanaLjubljanaSlovenia
  4. 4.LabMag, FCULUniversity of LisbonLisbonPortugal

Personalised recommendations