Advertisement

Genetic Programming and Evolvable Machines

, Volume 15, Issue 3, pp 245–274 | Cite as

Hardware architecture of the Protein Processing Associative Memory and the effects of dimensionality and quantisation on performance

  • Omer QadirEmail author
  • Alex Lenz
  • Gianluca Tempesti
  • Jon Timmis
  • Tony Pipe
  • Andy Tyrrell
Article
  • 241 Downloads

Abstract

The Protein Processor Associative Memory (PPAM) is a novel hardware architecture for a distributed, decentralised, robust and scalable, bidirectional, hetero-associative memory, that can adapt online to changes in the training data. The PPAM uses the location of data in memory to identify relationships and is therefore fundamentally different from traditional processing methods that tend to use arithmetic operations to perform computation. This paper presents the hardware architecture and details a sample digital logic implementation with an analysis of the implications of using existing techniques for such hardware architectures. It also presents the results of implementing the PPAM for a robotic application that involves learning the forward and inverse kinematics. The results show that, contrary to most other techniques, the PPAM benefits from higher dimensionality of data, and that quantisation intervals are crucial to the performance of the PPAM.

Keywords

Protein processing PPAM FPGA Associative memory BERT2 Inverse kinematics Dimensionality Quantisation Non-standard computation 

Notes

Acknowledgments

The research was funded by the EPSRC funded SABRE (Self-healing cellular Architectures for Biologically-inspired highly Reliable Electronic systems) project under Grant No. FP/F06219211.

Supplementary material

10710_2014_9217_MOESM1_ESM.pdf (165 kb)
Supplementary material 1 (PDF 165 KB)
10710_2014_9217_MOESM2_ESM.pdf (914 kb)
Supplementary material 2 (PDF 913 KB)
10710_2014_9217_MOESM3_ESM.pdf (121 kb)
Supplementary material 3 (PDF 120 KB)
10710_2014_9217_MOESM4_ESM.pdf (167 kb)
Supplementary material 4 (PDF 167 KB)
10710_2014_9217_MOESM5_ESM.pdf (312 kb)
Supplementary material 5 (PDF 312 KB)

References

  1. 1.
    J. Amaral, J. Ghosh, An associative memory architecture for concurrent production systems. in Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, vol. 3 (1994), pp. 2219–2224. doi: 10.1109/ICSMC.1994.400194.
  2. 2.
    G. Anzellotti, R. Battiti, I. Lazzizzera, G. Soncini, A. Zorat, A. Sartori, G. Tecchiolli, P. Lee, Totem: a highly parallel chip for triggering applications with inductive learning based on the reactive tabu search. Int. J. Mod. Phys. C 6(4), 555–560 (1995)CrossRefGoogle Scholar
  3. 3.
    J. Backus, Can programming be liberated from the Von Neumann style? A functional style and its algebra of programs. Commun. ACM 21(8), 613–641 (1978). doi: 10.1145/359576.359579 CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    K. Chellapilla, D. Fogel, Evolving neural networks to play checkers without relying on expert knowledge. IEEE Trans. Neural Netw. 10(6), 1382–1391 (1999). doi: 10.1109/72.809083 CrossRefGoogle Scholar
  5. 5.
    B. Coppin, Artificial Intelligence Illuminated, 1st edn. (Jones and Bartlett Publishers Inc, Sudbury, MA, 2004)Google Scholar
  6. 6.
    D.B. Fogel, Blondie24: Playing at the Edge of AI (Morgan Kaufmann Publishers Inc., San Francisco, CA, 2002)Google Scholar
  7. 7.
    A. Grübl, VLSI Implementation of a Spiking Neural Network. PhD thesis (University of Heidelberg, Heidelberg, 2007)Google Scholar
  8. 8.
    S. Hauck, Asynchronous design methodologies: an overview. Proc. IEEE 83(1), 69–93 (1995). doi: 10.1109/5.362752 CrossRefMathSciNetGoogle Scholar
  9. 9.
    D.O. Hebb, The Organization of Behavior: A Neuropsychological Theory (Wiley, New York, 1949)Google Scholar
  10. 10.
    M. Hülse, S. McBride, M. Lee, Fast learning mapping schemes for robotic hand-eye coordination. Cogn. Comput. 2, 1–16 (2010). doi: 10.1007/s12559-009-9030-y CrossRefGoogle Scholar
  11. 11.
    Intel (2011) Intel 64 and IA-32 Architectures Optimization Reference Manual. Intel, 248966th ednGoogle Scholar
  12. 12.
    C.G. Johnson, The non-classical mind: cognitive science and non-classical computing. in Intelligent Computing Everywhere, chap 3, ed. by A. Schuster (Springer, Berlin, 2007), pp. 45–59. doi: 10.1007/978-1-84628-943-9_3
  13. 13.
    B. Kosko, Bidirectional associative memories. IEEE Trans. Syst. Man Cybern. 18(1), 49–60 (1988). doi: 10.1109/21.87054 CrossRefMathSciNetGoogle Scholar
  14. 14.
    S.W. Lee, J.T. Kim, H. Wang, D.J. Bae, K.M. Lee, J.H. Lee, J.W. Jeon, Architecture of RETE network hardware accelerator for real-time context-aware system. in KES (1), vol. 4251 ed. by B. Gabrys, R.J. Howlett, L.C. Jain (Springer, LNCS, Berlin, 2006), pp. 401–408Google Scholar
  15. 15.
    A. Lenz, S. Skachek, K. Hamann, J. Steinwender, A. Pipe, C. Melhuish, The bert2 infrastructure: an integrated system for the study of human-robot interaction. in IEEE-Humanoids-2010 (2010), pp. 346–351. doi: 10.1109/ICHR.2010.5686319
  16. 16.
    T. Pfeil, A. Grübl, S. Jeltsch, E. Müller, P. Müller, M.A. Petrovici, M. Schmuker, D. Brüderle, J. Schemmel, K. Meier, Six networks on a universal neuromorphic computing substrate. Front. Neurosci. 7, 11 (2013)CrossRefGoogle Scholar
  17. 17.
    O. Qadir, J. Liu, J. Timmis, G. Tempesti, A. Tyrrell, Principles of protein processing for a self-organising associative memory. in Proceedings of the IEEE CEC 2010 (2010)Google Scholar
  18. 18.
    O. Qadir, J. Liu, J. Timmis, G. Tempesti, A. Tyrrell, From bidirectional associative memory to a noise-tolerant, robust self-organising associative memory. Artif. Intell. 175(2), 673–693 (2011). doi: 10.1016/j.artint.2010.10.008 CrossRefMathSciNetGoogle Scholar
  19. 19.
    O. Qadir, J. Liu, J. Timmis, G. Tempesti, A. Tyrrell, Hardware architecture for a bidirectional hetero-associative protein processing associative Memory. in Proceedings of the IEEE CEC 2011, (New Orleans, 2011)Google Scholar
  20. 20.
    O. Qadir, J. Timmis, G. Tempesti, A. Tyrrell, The protein processor associative memory on a robotic hand-eye coordination task. in 6th International ICST Conference on Bio-Inspired Models of Network (Information and Computing Systems (Bionetics2011), York, 2011)Google Scholar
  21. 21.
    O. Qadir, J. Timmis, G. Tempesti, A. Tyrrell, Profiling the fault tolerance for the adaptive protein processing associative memory. in NASA/ESA Conference on Adaptive Hardware and Systems (AHS2012) (Nuremberg, Germany, 2012)Google Scholar
  22. 22.
    C. Sakellariou, P.J. Bentley, Describing the fpga-based hardware architecture of systemic computation (haos). Comput. Inform. 31(3), 1001–1021 (2012)Google Scholar
  23. 23.
    M. Samie, G. Dragffy, A. Popescu, T. Pipe, C. Melhuish, Prokaryotic bio-inspired model for embryonics. in Proceedings of AHS 2009 (IEEE Computer Society, Washington, DC, AHS ’09, 2009), pp. 163–170. doi: 10.1109/AHS.2009.45
  24. 24.
    A. Sudo, A. Sato, O. Hasegawa, Associative memory for online learning in noisy environments using self-organizing incremental neural. Network 20(6), 964–972 (2009). doi: 10.1109/TNN.2009.2014374 Google Scholar
  25. 25.
    J. Teich, Invasive algorithms and architectures (Invasive Algorithmen und Architekturen). IT—Inf. Technol. 50(5), 300–310 (2008)Google Scholar
  26. 26.
    K. Tirdad, A. Sadeghian, Hopfield neural networks as pseudo random number generators. in Fuzzy Information Processing Society (NAFIPS), 2010 Annual Meeting of the North American (2010), pp. 1–6. doi: 10.1109/NAFIPS.2010.5548182
  27. 27.
    T. Toffoli, CAM: a high-performance cellular automaton machine. Phys. D 10, 195–204 (1984)CrossRefMathSciNetGoogle Scholar
  28. 28.
    D. Tsafrir, Y. Etsion, D.G. Feitelson, S. Kirkpatrick, System noise, OS clock ticks, and fine-grained parallel applications. in Proceedings of the 19th Annual International Conference on Supercomputing (ACM, New York, NY, USA, ICS ’05, 2005), pp. 303–312. doi: 10.1145/1088149.1088190
  29. 29.
    A. Turing, Computing machinery and intelligence. Mind 59, 433–460 (1950)CrossRefMathSciNetGoogle Scholar
  30. 30.
    L. Wang, M. Jiang, R. Liu, X. Tang, Comparison bam and discrete hopfield networks with cpn for processing of noisy data. in Proceedings of ICSP2008 (2008), pp. 1708–1711. doi: 10.1109/ICOSP.2008.4697466
  31. 31.
    C.C. Yang, S. Prasher, J.A. Landry, H. Ramaswamy, A. Ditommaso, Application of artificial neural networks in image recognition and classification of crop and weeds. Can. Agric. Eng. 42(3), 147–152 (2000)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Omer Qadir
    • 1
    Email author
  • Alex Lenz
    • 3
  • Gianluca Tempesti
    • 2
  • Jon Timmis
    • 2
  • Tony Pipe
    • 3
  • Andy Tyrrell
    • 2
  1. 1.Nordic SemiconductorTrondheimNorway
  2. 2.University of YorkYorkUK
  3. 3.University of West of EnglandBristolUK

Personalised recommendations