Genetic Programming and Evolvable Machines

, Volume 13, Issue 4, pp 445–491 | Cite as

Quantum control experiments as a testbed for evolutionary multi-objective algorithms

  • Ofer M. Shir
  • Jonathan Roslund
  • Zaki Leghtas
  • Herschel Rabitz
Article

Abstract

Experimental multi-objective Quantum Control is an emerging topic within the broad physics and chemistry applications domain of controlling quantum phenomena. This realm offers cutting edge ultrafast laser laboratory applications, which pose multiple objectives, noise, and possibly constraints on the high-dimensional search. In this study we introduce the topic of multi-observable quantum control (MOQC), and consider specific systems to be Pareto optimized subject to uncertainty, either experimentally or by means of simulated systems. The latter include a family of mathematical test-functions with a practical link to MOQC experiments, which are introduced here for the first time. We investigate the behavior of the multi-objective version of the covariance aatrix adaptation evolution strategy (MO-CMA-ES) and assess its performance on computer simulations as well as on laboratory closed-loop experiments. Overall, we propose a comprehensive study on experimental evolutionary Pareto optimization in high-dimensional continuous domains, draw some practical conclusions concerning the impact of fitness disturbance on algorithmic behavior, and raise several theoretical issues in the broad evolutionary multi-objective context.

Keywords

Experimental Pareto optimization Quantum control experiments Robustness to noise Multi-objective evolution strategies Covariance matrix adaptation Diffraction grating 

Notes

Acknowledgments

The authors acknowledge support from ARO, NSF, ONR, DHS and the Lockheed Martin Corporation.

References

  1. 1.
    W.S. Warren, H. Rabitz, M. Dahleh, Coherent control of quantum dynamics: The dream is alive. Science 259, 1581–1589 (1993)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    P. Nuernberger, G. Vogt, T. Brixner, G. Gerber, Femtosecond quantum control of molecular dynamics in the condensed phase. Phys. Chem. Chem. Phys. 9(20), 2470–2497 (2007)CrossRefGoogle Scholar
  3. 3.
    A.M. Weiner, Femtosecond pulse shaping using spatial light modulators. Rev. Sci. Instrum. 71(5), 1929–1960 (2000)CrossRefGoogle Scholar
  4. 4.
    A.P. Peirce, M.A. Dahleh, H. Rabitz, Optimal control of quantum-mechanical systems: existence, numerical approximation, and applications. Phys. Rev. A 37(12), 4950–4964 (1988)Google Scholar
  5. 5.
    R.S. Judson, H. Rabitz, Teaching lasers to control molecules. Phys. Rev. Lett. 68(10), 1500–1503 (1992)CrossRefGoogle Scholar
  6. 6.
    T. Bäck, Evolutionary algorithms in theory and practice. (Oxford University Press, New York, NY, USA, 1996)MATHGoogle Scholar
  7. 7.
    J. Klockgether, H.P. Schwefel, Two-phase nozzle and hollow core jet experiments. In: Proceedings of the 11th Symposium on Engineering Aspects of Magneto-Hydrodynamics. (Pasadena, California, USA, Caltech, 1970)Google Scholar
  8. 8.
    K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms. (Wiley, New York, 2001)MATHGoogle Scholar
  9. 9.
    C.A.C. Coello, G.B. Lamont, van D.A. Veldhuizen, Evolutionary Algorithms for Solving Multiobjective Problems. (Springer, Berlin, 2007)Google Scholar
  10. 10.
    J. Knowles, D. Corne, K. Deb, Multiobjective Problem Solving from Nature: From Concepts to Applications. Natural Computing Series. (Springer, Berlin, 2008)Google Scholar
  11. 11.
    S. Weber, F. Sauer, M. Plewicki, A. Merli, L. Wöste, A. Lindinger, Multi-objective optimization on alkali dimers. J. Mod. Opt. 54(16–17), 2659–2666 (2007)CrossRefGoogle Scholar
  12. 12.
    L. Bonacina, J. Extermann, A. Rondi, V. Boutou, J.P. Wolf, Multiobjective genetic approach for optimal control of photoinduced processes. Phys. Rev. A 76(2), 023408 (2007)CrossRefGoogle Scholar
  13. 13.
    M. Roth, L. Guyon, J. Roslund, V. Boutou, F. Courvoisier, J.P. Wolf, H. Rabitz, Quantum control of tightly competitive product channels. Phys. Rev. Lett. 102(25), 253001 (2009)CrossRefGoogle Scholar
  14. 14.
    A. Bartelt, M. Roth, M. Mehendale, H. Rabitz, Assuring robustness to noise in optimal quantum control experiments. Phys. Rev. A 71(6), 063806 (2005)CrossRefGoogle Scholar
  15. 15.
    R. Chakrabarti, R. Wu, H. Rabitz, Quantum Pareto optimal control. Phys. Rev. A 78(3), 033414 (2008)CrossRefGoogle Scholar
  16. 16.
    N. Hansen, S. Kern, Evaluating the CMA evolution strategy on multimodal test functions. In: Parallel Problem Solving from Nature—PPSN V. Volume 1498 of Lecture Notes in Computer Science, (Amsterdam, Springer, 1998) pp. 282–291Google Scholar
  17. 17.
    O.M. Shir, J. Roslund, T. Bäck, H. Rabitz, Performance Analysis of Derandomized Evolution Strategies in Quantum Control Experiments. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO-2008, (ACM Press, New York, NY, USA, 2008) pp. 519–526Google Scholar
  18. 18.
    J.W. Wilson, P. Schlup, M. Lunacek, D. Whitley, R.A. Bartels, Calibration of liquid crystal ultrafast pulse shaper with common-path spectral interferometry and application to coherent control with a covariance matrix adaptation evolutionary strategy. Rev. Sci. Instrum. 79(3), 033103+ (2008)Google Scholar
  19. 19.
    C. Igel, N. Hansen, S. Roth, Covariance matrix adaptation for multi-objective optimization. Evol. Comput. 15(1), 1–28 (2007)CrossRefGoogle Scholar
  20. 20.
    D.V. Arnold, Noisy optimization with evolution strategies. Genetic Algorithms and Evolutionary Computation (Springer, Berlin, 2002)Google Scholar
  21. 21.
    Y.S. Ong, Z. Zhou, D. Lim, Curse and blessing of uncertainty in evolutionary algorithm using approximation. In: Proceedings of the 2006 IEEE World Congress on Computational Intelligence, IEEE Computational Intelligence Society, (2006) pp. 2928–2935Google Scholar
  22. 22.
    H.G. Beyer, B. Sendhoff, Robust optimization—A comprehensive survey. Comput. Methods Appl. Mech. Eng. 196(33-34), 3190–3218 (2007)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    J. Branke, Evolutionary optimization in dynamic environments. (Kluwer Academic Publishers, Norwell, MA, USA, 2001)Google Scholar
  24. 24.
    H.G. Beyer, B. Sendhoff, Evolution strategies for robust optimization. In: Proceedings of the 2006 IEEE World Congress on Computational Intelligence, IEEE Computational Intelligence Society, (2006) pp. 1346–1353Google Scholar
  25. 25.
    H.G. Beyer, M. Olhofer, B. Sendhoff, On the impact of systematic noise on the eevolutionary optimization performance—A sphere model analysis. Genet. Program. Evol. Mach. 5(4), 327–360 (2004)CrossRefGoogle Scholar
  26. 26.
    K. Deb, H. Gupta, Introducing robustness in multi-objective optimization. Evol. Comput. 14(4), 463–494 (2006)CrossRefGoogle Scholar
  27. 27.
    J. Teich, Pareto front exploration with uncertain objectives. In: EMO ’01: Proceedings of the First International Conference on Evolutionary Multi-Criterion Optimization (Springer, London, UK, 2001) pp. 314–328Google Scholar
  28. 28.
    E. Hughes, Evolutionary multi-objective ranking with uncertainty and noise. In: EMO ’01: Proceedings of the First International Conference on Evolutionary Multi-Criterion Optimization (Springer, London, UK, 2001) pp. 329–343Google Scholar
  29. 29.
    D. Büche, P. Stoll, R. Dornberger, P. Koumoutsakos, Multiobjective evolutionary algorithm for the optimization of noisy combustion processes. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 32(4), 460–473 (2002)CrossRefGoogle Scholar
  30. 30.
    C.K. Goh, K.C. Tan, An investigation on noisy environments in evolutionary multiobjective optimization. IEEE Trans. Evol. Comput. 11(3), 354–381 (2007)CrossRefGoogle Scholar
  31. 31.
    J. Bader, E. Zitzler, Robustness in hypervolume-based multiobjective search. TIK Report 317, Computer Engineering and Networks Laboratory (TIK), ETH Zurich (2010)Google Scholar
  32. 32.
    J.M. Mulvey, R.J. Vanderbei, S.A. Zenios, Robust optimization of large-scale systems. Operat. Res. 43(2), 264–281 (1995)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    I.N. Egorov, G.V. Kretinin, I.A. Leshchenko, How to execute robust design optimization. In: 9th AIAA/ISSMO Symposium and Exhibit on Multidisciplinary Analysis and Optimization (2002)Google Scholar
  34. 34.
    Y. Jin, B. Sendhoff, Trade-off between performance and robustness: An evolutionary multiobjective approach. In: Proceedings of the Evolutionary Multi-Criterion Optimization: Second Int’l Conference (EMO 2003). Volume 2632 of Lecture Notes in Computer Science (Berlin, Springer, 2003) pp. 237–251Google Scholar
  35. 35.
    S. Gunawan, S. Azarm, Multi-objective robust optimization using a sensitivity region concept. Struct. Multidiscip. Optim. 29(1), 50–60 (2005)CrossRefGoogle Scholar
  36. 36.
    S.O. Hagan, W.B. Dunn, J.D. Knowles, D. Broadhurst, R. Williams, J.J. Ashworth, M. Cameron, D.B. Kell, Closed-loop, multiobjective optimization of two-dimensional gas chromatography/mass spectrometry for serum metabolomics. Anal. Chem. 79(2), 464–476 (2007)CrossRefGoogle Scholar
  37. 37.
    J. Knowles, Closed-loop evolutionary multiobjective optimization. IEEE Comput. Intell. Mag. 4(3), 77–91 (2009)Google Scholar
  38. 38.
    J. Knowles, ParEGO: A hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems. IEEE Trans. Evol. Comput. 10(1), 50–66 (2006)CrossRefGoogle Scholar
  39. 39.
    van D.A. Veldhuizen, G.B. Lamont, Multiobjective evolutionary algorithms: Analyzing the state-of-the-art. Evol. Comput. 8(2), 125–147 (2000)CrossRefGoogle Scholar
  40. 40.
    E. Zitzler, M. Laumanns, S. Bleuler, A tutorial on evolutionary multiobjective optimization. In: Metaheuristics for Multiobjective Optimisation. Volume 535 of Lecture Notes in Economics and Mathematical Systems (Springer, 2004) pp. 3–37Google Scholar
  41. 41.
    C. Igel, T. Suttorp, N. Hansen, A computational efficient covariance matrix update and a (1+1)-CMA for evolution strategies. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2006 (ACM Press, New York, NY, USA 2006) pp. 453–460Google Scholar
  42. 42.
    D.V. Arnold, H.G. Beyer, Local performance of the (μ/μI, λ)-ES in a noisy environment. In: W. Martin, W. Spears (eds) Foundations of Genetic Algorithms, 6, (Morgan Kaufmann, San Francisco, CA, 2001) pp. 127–141.CrossRefGoogle Scholar
  43. 43.
    H.G. Beyer, Toward a theory of evolution strategies: Some asymptotical results from the \((1\stackrel{+}{,})\)-Theory. Evol. Comput. 1(2), 165–188 (1993)CrossRefGoogle Scholar
  44. 44.
    D.V. Arnold, H.G. Beyer, Local performance of the (1 + 1)-ES in a noisy environment. IEEE Trans. Evol. Comput. 6(1), 30–41 (2002)MathSciNetCrossRefGoogle Scholar
  45. 45.
    M. Laumanns, G. Rudolph, H.P. Schwefel, Mutation control and convergence in evolutionary multi-objective optimization. In: Proceedings of the 7th International Mendel Conference on Soft Computing (MENDEL 2001) (Brno, Czech Republic, 2001) pp. 24–29Google Scholar
  46. 46.
    M. Emmerich, A. Deutz, Test problems based on Lamé superspheres. In: EMO-2007. Volume 4403 of Lecture Notes in Computer Science (Springer, New York, 2007) pp. 922–936Google Scholar
  47. 47.
    O.M. Shir, T. Bäck, H. Rabitz, M.J. Vrakking, On the evolution of laser pulses under a dynamic quantum control environment. In: Proceedings of the 2008 IEEE World Congress on Computational Intelligence (WCCI-CEC), IEEE Computational Intelligence Society (2008) pp. 2127–2134Google Scholar
  48. 48.
    O.M. Shir, V. Beltrani, T. Bäck, H. Rabitz, M.J. Vrakking, On the diversity of multiple optimal controls for quantum systems. J. Phys. B: At. Mol. Opt. Phys. 41(7), 074021 (2008)CrossRefGoogle Scholar
  49. 49.
    O.M. Shir, M. Emmerich, T. Bäck, M.J. Vrakking, The application of evolutionary multi-criteria optimization to dynamic molecular alignment. In: Proceedings of the 2007 IEEE Congress on Evolutionary Computation (CEC), IEEE Computational Intelligence Society (2007) pp. 4108–4115Google Scholar
  50. 50.
    J.W. Klinkenberg, M. Emmerich, A. Deutz, O.M. Shir, T. Bäck, Accelerating SMS-EMOA for problems with time-expensive evaluations using kriging, self-adaptation, and MPI. In: Multiple Criteria Decision Making for Sustainable Energy and Transportation Systems: Proceedings of MCDM 2008, The 19th International Conference on Multiple Criteria Decision Making. Volume 634 of Lecture Notes in Economics and Mathematical Systems. (Heidelberg, Germany, Springer Physica, 2010) pp. 301–312Google Scholar
  51. 51.
    F. Rosca-Pruna, M.J. Vrakking, Revival structures in picosecond laser-induced alignment of I2 molecules. J. Chem. Phys. 116(15), 6579–6588 (2002)CrossRefGoogle Scholar
  52. 52.
    M. Preuss, Reporting on experiments in evolutionary computation. Technical Report CI-221/07, University of Dortmund, SFB 531 (2007)Google Scholar
  53. 53.
    C. Igel, T. Glasmachers, V. Heidrich-Meisner, Shark. J. Mach. Learn. Res. 9, 993–996 (2008)MATHGoogle Scholar
  54. 54.
    E. Zitzler, L. Thiele, Multiobjective optimization using evolutionary algorithms—A comparative case study. In: Conference on Parallel Problem Solving from Nature (PPSN V). Volume 1498 of Lecture Notes in Computer Science (Amsterdam, Springer, 1998) pp. 292–301Google Scholar
  55. 55.
    E. Zitzler, L. Thiele, M. Laumanns, C.M. Fonseca, V. Grunertda Fonseca, Performance assessment of multiobjective optimizers: An analysis and review. IEEE Trans. Evol. Comput. 7(2), 117–132 (2003)CrossRefGoogle Scholar
  56. 56.
    E. Zitzler, Evolutionary algorithms for multiobjective optimization: Methods and applications. PhD thesis, (ETH Zurich, Switzerland, 1999)Google Scholar
  57. 57.
    M. Laumanns, G. Rudolph, H.P. Schwefel, Approximating the pareto set: Concepts, diversity issues, and performance assessment. Technical Report CI-72/99, (University of Dortmund, 1999)Google Scholar
  58. 58.
    M. Emmerich, N. Beume, B. Naujoks, An EMO algorithm using the hypervolume measure as selection criterion. In: Proceedings of the Evolutionary Multi-Criterion Optimization: Third Int’l Conference (EMO 2005). Volume 3410 of Lecture Notes in Computer Science (Berlin, Springer, 2005) pp. 62–76Google Scholar
  59. 59.
    N. Beume, B. Naujoks, M. Emmerich, SMS-EMOA: Multiobjective selection based on dominated hypervolume. Eur. J. Oper. Res. 181(3), 1653–1669 (2007)CrossRefMATHGoogle Scholar
  60. 60.
    A. Ostermeier, A. Gawelczyk, N. Hansen, Step-size adaptation based on non-local use of selection information. In: Parallel Problem Solving from Nature—PPSN III. Volume 866 of Lecture Notes in Computer Science (Springer, 1994) pp. 189–198Google Scholar
  61. 61.
    R. Ros, N. Hansen, A simple modification in CMA-ES achieving linear time and space complexity. In: Parallel Problem Solving from Nature—PPSN X. Volume 5199 of Lecture Notes in Computer Science (Springer, New York, 2008) pp. 296–305Google Scholar
  62. 62.
    H. Li, Q. Zhang, Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II. IEEE Trans. Evol. Comput. 13(2), 284–302 (2009)CrossRefGoogle Scholar
  63. 63.
    L. Rachmawati, D. Srinivasan, Multiobjective evolutionary algorithm with controllable focus on the knees of the Pareto front. IEEE Trans. Evol. Comput. 13(4), 810–824 (2009)CrossRefGoogle Scholar
  64. 64.
    D.H. Wolpert, W.G. Macready, No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1, 67–82 (1997)CrossRefGoogle Scholar
  65. 65.
    D. Hadka, P. Reed, Diagnostic assessment of dearch controls and failure modes in many-objective evolutionary optimization. Evol. Comput. (2011)Google Scholar
  66. 66.
    A. Zhou, B.Y. Qu, H. Li, S.Z. Zhao, P.N. Suganthan, Q. Zhang, Multiobjective evolutionary algorithms: A survey of the state of the art. Swarm Evol. Comput. 1(1), 32–49 (2011)CrossRefGoogle Scholar
  67. 67.
    E. Zitzler, D. Brockhoff, L. Thiele, The hypervolume indicator revisited: On the design of Pareto-compliant indicators Via weighted integration. In: S. Obayashi et al., eds. Conference on Evolutionary Multi-Criterion Optimization (EMO 2007). Volume 4403 of LNCS (Berlin, Springer, 2007) pp. 862–876Google Scholar
  68. 68.
    O.M. Shir, M. Preuss, B. Naujoks, M. Emmerich, Enhancing decision space diversity in evolutionary multiobjective algorithms. In: Proceedings of Evolutionary Multi-Criterion Optimization: Fifth International Conference (EMO 2009). Volume 5467 of Lecture Notes in Computer Science (Springer, 2009) pp. 95–109Google Scholar
  69. 69.
    T. Ulrich, J. Bader, L. Thiele, Defining and optimizing indicator-based diversity measures in multiobjective search. In: R. Schaefer, C. Cotta, J. Kolodziej, G. Rudolph, eds. PPSN-XI. Volume 6238 of Lecture Notes in Computer Science (Springer, 2010) pp. 707–717Google Scholar
  70. 70.
    A. Zadorojniy, M. Masin, L. Greenberg, O.M. Shir, L. Zeidner, Algorithms for finding maximum diversity of design variables in multi-objective optimization. Procedia Comput. Sci. 8, 171–176 (2012). Conference on Systems Engineering ResearchGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Ofer M. Shir
    • 1
  • Jonathan Roslund
    • 1
  • Zaki Leghtas
    • 2
  • Herschel Rabitz
    • 1
  1. 1.Department of ChemistryPrinceton UniversityPrincetonUSA
  2. 2.Ecole des Mines ParisTechParisFrance

Personalised recommendations