Genetic Programming and Evolvable Machines

, Volume 13, Issue 4, pp 411–443 | Cite as

Open-ended evolution to discover analogue circuits for beyond conventional applications

  • Yerbol A. SapargaliyevEmail author
  • Tatiana G. Kalganova


Analogue circuits synthesised by means of open-ended evolutionary algorithms often have unconventional designs. However, these circuits are typically highly compact, and the general nature of the evolutionary search methodology allows such designs to be used in many applications. Previous work on the evolutionary design of analogue circuits has focused on circuits that lie well within analogue application domain. In contrast, our paper considers the evolution of analogue circuits that are usually synthesised in digital logic. We have developed four computational circuits, two voltage distributor circuits and a time interval metre circuit. The approach, despite its simplicity, succeeds over the design tasks owing to the employment of substructure reuse and incremental evolution. Our findings expand the range of applications that are considered suitable for evolutionary electronics.


Analogue Circuit Synthesis CAD SPICE Simulation Evolutionary algorithms 


  1. 1.
    R. Zebulum, M.S. Vellasco, M.A. Pacheco, Variable length representation in evolutionary electronics. Evol. Comput. 8(1), 93–120 (2000)CrossRefGoogle Scholar
  2. 2.
    R. Ingo, Optimierung Technischer Systeme Nach Prinzipien der Biologischen Evolution (Technical University of Berlin, PhD dissertation, 1970)Google Scholar
  3. 3.
    F. Bennett III, J. Koza, M. Keane, J. Yu, W. Mydlowec, O. Stiffelman, Evolution by Means of Genetic Programming of Analogue Circuits That Perform Digital Functions, in GECCO-99: Proceedings of the Genetic and Evolutionary Computation Conference, July 13–17, 1999, pp. 1477–1483Google Scholar
  4. 4.
    W. Mydlowec, J. Koza, Use of Time-domain Simulations in Automatic Synthesis of Computational Circuits Using Genetic Programming, in Genetic and Evolutionary Computation Conference (Late Breaking Papers, Las Vegas, Nevada, 2000), pp. 187–197Google Scholar
  5. 5.
    M. Streeter, M. Keane, J. Koza, Iterative Refinement of Computational Circuits Using Genetic Programming, in Proceedings of Genetic and Evolutionary Computation Conference, Morgan Kaufmann, San Francisco, CA, 2002, pp. 877–884Google Scholar
  6. 6.
    S. Cipriani, A. Takeshian, Compact Cubic Function Generator, U. S. patent 6,160,427. Filed September 4, 1998. Issued December 12, 2000Google Scholar
  7. 7.
    J. Koza, Automated synthesis of computational circuits using genetic programming, in IEEE Conference on Evolutionary Computation, IEEE Press, Piscataway, NJ, 1997, pp. 447–452Google Scholar
  8. 8.
    J. F. Miller, P. Thomson, Evolving Digital Electronic Circuits for Real-Valued Function Generation using a Genetic Algorithm, in Proceedings of the Third Annual Conference on Genetic Programming, Morgan Kaufmann, 1998, pp. 863–868Google Scholar
  9. 9.
    F. Bloom, Introduction to preclinical neuropsychopharmocology. in Psychopharmocology: The Forth Generation of Progress, ed. by Bloom F.E., Kupfer D.J. (New York, Raven, 1995), pp. 1–7Google Scholar
  10. 10.
    D. Hubel, Eye, Brain, and Vision, Scientific American Library, New York, 1988. Available:
  11. 11.
    Feodosia state Optical Factory, The Artillery Quantum rangefinder (online),
  12. 12.
    Model 2145 Time to Amplitude Converter/Single channel Analyzer, Datasheet, Canberra Industries, Inc., Available:
  13. 13.
    T. McConaghy, G.G.E. Gielen, Globally reliable variation-aware sizing of analogue integrated circuits via response surfaces and structural homotopy. IEEE Trans. Comput. Aided Des. 28(11), 1627–1640 (2009)CrossRefGoogle Scholar
  14. 14.
    K. Kim, A. Wong, H. Lipson, Automated synthesis of resilient and tamper-evident analogue circuits without a single point of failure. Genetic Programming and Evolvable Machines (online) (2009)Google Scholar
  15. 15.
    A. Thompson, P. Layzell, Evolution of Robustness in an Electronics Design, in International Conference on Intelligent Engineering Systems, Springer, Berlin/Heidelberg, Germany, 2000, pp. 218–228Google Scholar
  16. 16.
    A. Stoica, D. Keymeulen, T. Arslan, V. Duong, R. Zebulum, I. Ferguson, X. Guo, Circuit Self-Recovery Experiments in Extreme Environments, in Proceedings of the 2004 NASA/DoD Conference on Evolvable Hardware, Seattle, USA, June 2004, pp. 142–145Google Scholar
  17. 17.
    J. Walker, J. Hilder, A. Tyrrell, Towards Evolving Industry-feasible Intrinsic Variability Tolerant CMOS Designs, in 11th IEEE Congress on Evolutionary Computation, Trondheim, Norway, May, 2009, pp. 1591–1598Google Scholar
  18. 18.
    J. Koza, L. Jones, M. Keane, M. Streeter, S. Al-Sakran, Toward automated design of industrial-strength analogue circuits by means of genetic programming, in Genetic Programming Theory and Practice II, Chapter 8 (Kluwer Academic Publishers, Boston, 2004), pp. 121–142Google Scholar
  19. 19.
    J. D. Lohn, G. L. Haith, S. P. Colombano, D. Stassinopoulos, A Comparison of Dynamic Fitness Schedules for Evolutionary Design of Amplifiers, in Proceedings of the NASA/DoD Workshop on Evolvable Hardware, IEEE Computer Society, CA, USA, 19–21 July, 1999, pp. 87–92Google Scholar
  20. 20.
    C. Goh, Y. Li, GA automated design and synthesis of analogue circuits with practical constraints. Congr. Evol. Comput. 1, 170–177 (2001)Google Scholar
  21. 21.
    S. Ando, H. Iba, Analogue circuit design with a variable length chromosome. Congr. Evol. Comput., pp. 994–100 (2000)Google Scholar
  22. 22.
    J.B. Grimbleby, Hybrid genetic algorithms for analogue network synthesis (Congress on Evolutionary Computing, Washington, USA, 1999), pp. 1781–1787Google Scholar
  23. 23.
    J. Hu, X. Zhong, E. Goodman, Open-ended Robust Design of Analogue Filters Using Genetic Programming, in Genetic & Evolutionary Computation Conference, ACM Press, vol. 2, Washington, DC, 2005, pp. 1619–1626Google Scholar
  24. 24.
    Y. Sapargaliyev, T.G. Kalganova, On Comparison of Constrained and Unconstrained Evolutions in Analogue Electronics on the Example of “LC” Low-Pass Filters. IEICE Trans. Electron. E89-C(12), 1920–1927 (2006)Google Scholar
  25. 25.
    Z. Gan, Z. Yang, G. Li, M. Jiang, Automatic Synthesis of Practical Passive Filters Using Clonal Selection Principle-Based Gene Expression Programming, in Lecture Notes in Computer Science, Springer Berlin/Heidelberg, ISSN 0302-9743, vol. 4684, 2007, pp. 1611–3349 (Online)Google Scholar
  26. 26.
    S. Chang, H. Hou, Y. Su, Automated passive filter synthesis using a novel tree representation and genetic programming. IEEE Trans on evolutionary computation 10, 93–100 (2006)CrossRefGoogle Scholar
  27. 27.
    A. Thompson, Artificial evolution in the physical world, in Evolutionary Robotics, ed. by Gomi (AAI Books, 1997)Google Scholar
  28. 28.
    C. Mattiussi, D. Floreano, Analogue genetic encoding for the evolution of circuits and networks. IEEE Trans. Evol. Comput. 11, 596–607 (2007)CrossRefGoogle Scholar
  29. 29.
    F. Wang, Y. Li, K. Li, Z. Lin, A New Circuit Representation Method for Analogue Circuit Design Automation (IEEE Press, IEEE World Congress on Computational Intelligence, Hong Kong, 2008)Google Scholar
  30. 30.
    T. Sripramong, C. Toumazou, The invention of CMOS amplifiers using genetic programming and current-flow analysis. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 21(11), 1237–1252 (2002)Google Scholar
  31. 31.
    H. Shibata, N. Fujii, Automated design of analogue computational circuits using cell-based structure, in Circuits and Systems, ISCAS 2002. IEEE International Symposium, vol. 2, 26–29 May 2002, pp. II-53–II-56Google Scholar
  32. 32.
    X. Xia, Y. Li, W. Ying, L. Chen, Automated design approach for analogue circuit using genetic algorithm. Lect. Notes Comput. Sci. 4490, 1124–1130 (2007)CrossRefGoogle Scholar
  33. 33.
    T. Dastidar, P. Chakrabarti, P. Ray, A synthesis system for analogue circuits based on evolutionary search and topological reuse. IEEE Trans. Evol. Comput. 9(2), 211–224 (2005)CrossRefGoogle Scholar
  34. 34.
    W. Kruiskamp, D. Leenaerts, Darwin: CMOS opamp synthesis by means of a genetic algorithm, in Proceedings of 36th Design Automation Conference, 1995Google Scholar
  35. 35.
    M. A. Trefzer, Evolution of Transistor Circuits, Dissertation for the degree of Doctor of Natural Sciences, Ruperto-Carola-University of Heidelberg, Germany, December 2006Google Scholar
  36. 36.
    T. Kalganova, Bidirectional incremental evolution in evolvable hardware, in Proceedings of 2nd NASA/DoD Workshop Evolvable Hardware, 13–15 July 2000, pp. 65–74Google Scholar
  37. 37.
    L. Sekanina, M. Bidlo, Evolutionary design of arbitrarily large sorting networks using development. Genet. Program Evol. Mach. 6(3), 319–347 (2005)CrossRefGoogle Scholar
  38. 38.
    G. He, N. Xiong, A. V. Vasilakos, Y. Li, Z. Shi, Automated Design of Logic Circuits with a Increasable Evolution Approach, in Proceedings of 11th IEEE International Conference on High Performance Computing and Communications, IEEE Computer Society, vol. 00, Washington, DC, 2009, pp. 206–213Google Scholar
  39. 39.
    J. Torresen, A divide-and-conquer approach to evolvable hardware, in Evolvable Systems: From Biology to Hardware. Second International Conference, ICES 98, LNCS 1478, Springer-Verlag, 1998, pp. 57–65Google Scholar
  40. 40.
    J. Walker, K. Völk, S. Smith, J. F. Miller, Parallel evolution using multi-chromosome Cartesian genetic programming. Genet. Program. Evol. Mach. 10(4) (2009)Google Scholar
  41. 41.
    I. Harvey, P. Husbands, D. Cliff, Seeing the light: artificial evolution; real vision, in ed. by D. Cliff, P. Husbands, J. A. Meyer, S. Wilson, From Animals to Animals 3, Proceedings of the third international conference on Simulation of Adaptive Behavior, MIT Press/Bradford Books, 1994Google Scholar
  42. 42.
    B. Vigoda, Analogue Logic: Continuous-Time Analogue Circuits for Statistical Signal Processing [Online] September 2003, Massachusetts Institute of Technology, XP007904886; URL:
  43. 43.
    Y. Sapargaliyev, T.G. Kalganova, Unconstrained evolution of analogue computational ‘QR’ circuit with oscillating length representation, in Proceedings of International Conference on Evolvable Systems, 2008, ed. by G.S. Hornby et alGoogle Scholar
  44. 44.
    J.R. Koza, Genetic Programming II: Automatic Discovery of Reusable Programs (MIT Press, Cambridge, 1994)zbMATHGoogle Scholar
  45. 45.
    PSpice A/D reference guide. Version 10.0. San Jose: Cadence Design Systems, Inc., 2003Google Scholar
  46. 46.
    O. Aaserud, I. Nielsen, I. Ring, Trends in current analogue design: a panel debate. Analog. Integr. Circuits Signal Process. 7(1), 5–9 (1995)CrossRefGoogle Scholar
  47. 47.
    B. Al-Hashimi (ed.), System On Chip: Next Generation Electronics, IEE Circuits Devices and Systems Book Series, 2006Google Scholar
  48. 48.
    A. Lymberis, D. De Rossi, Wearable ehealth systems for personalised health managementstate of the art and future challenges, IOS Press, 2004Google Scholar
  49. 49.
    L. Sekanina, V. Drábek, Theory and applications of evolvable embedded systems, in Proceedings of the 11th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems, IEEE CS Press, 2004, pp. 186–193Google Scholar
  50. 50.
    P. Layzell, Hardware evolution: on the nature of artificially evolved electronic circuits, PhD thesis, School of Cognitive and Computing Science, University of Sussex, Sussex, 2001Google Scholar
  51. 51.
    J. He, M. Liu, Y. Chen, A Novel Real-Coded Scheme for Evolutionary Analogue Circuit Synthesis, Ligent Systems and Applications, in International Workshop, 23–24 May 2009, pp. 1–4Google Scholar
  52. 52.
    A. Das, R. Vemuri, An Automated Passive Analogue Circuit Synthesis Framework using Genetic Algorithms, in IEEE Computer Society Annual Symposium on VLSI, 2007, pp. 145–152Google Scholar
  53. 53.
    K. Ohe, M. Konishi, J. Imai, Design support classifier of filter circuit structure, in SICE Annual Conference, 20–22 August 2008, pp. 2695–2699Google Scholar
  54. 54.
    M. Trefzer, J. Langeheine, J. Schemmel, K. Meier, Operational amplifiers: an example for multi-objective optimization on an analogue evolvable hardware platform, in Evolvable Systems: From Biology to Hardware, Sixth International Conference, ICES 2005, number 3637 in LNCS, ed. by J.M. Moreno, J. Madrenas, J. Cosp (Springer-Verlag, Sitges, 2005), pp. 86–97CrossRefGoogle Scholar
  55. 55.
    H. Yuan, J. He, Evolutionary design of operational amplifier using variable-length differential evolution algorithm, in 2010 International Conference on Computer Application and System Modeling (ICCASM), October 2010, pp. V4-610–V4-614Google Scholar
  56. 56.
    P. Conca, G. Nicosia, G. Stracquadanio, J. Timmis, Nominal-Yield-Area Tradeoff in Automatic Synthesis of Analogue Circuits: A Genetic Programming Approach Using Immune-Inspired Operators, in NASA/ESA Conference, Adaptive Hardware and Systems, AHS 2009, Francisco, CA, 29 July 2009–1 August 2009, pp. 399–406Google Scholar
  57. 57.
    S. L. Sabat, K. S. Kumar, S. K. Udgata, Differential Evolution and Swarm Intelligence Techniques for Analogue Circuit Synthesis, in World Congress on Nature & Biologically Inspired Computing, 9–11 December 2009, pp. 469–474Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Yerbol A. Sapargaliyev
    • 1
    Email author
  • Tatiana G. Kalganova
    • 1
  1. 1.School of Engineering and DesignBrunel UniversityUxbridgeUK

Personalised recommendations