Advertisement

Genetic Programming and Evolvable Machines

, Volume 12, Issue 3, pp 305–327 | Cite as

Formal verification of candidate solutions for post-synthesis evolutionary optimization in evolvable hardware

  • Zdenek Vasicek
  • Lukas SekaninaEmail author
Article

Abstract

We propose to utilize a formal verification algorithm to reduce the fitness evaluation time for evolutionary post-synthesis optimization in evolvable hardware. The proposed method assumes that a fully functional digital circuit is available. A post-synthesis optimization is then conducted using Cartesian Genetic Programming (CGP) which utilizes a satisfiability problem solver to decide whether a candidate solution is functionally correct or not. It is demonstrated that the method can optimize digital circuits of tens of inputs and thousands of gates. Furthermore, the number of gates was reduced for the LGSynth93 benchmark circuits by 37.8% on average with respect to results of the conventional SIS tool.

Keywords

Cartesian genetic programming Circuit optimization SAT solver Evolvable hardware 

Notes

Acknowledgments

This work was partially supported by the Czech Science Foundation under projects Natural Computing on Unconventional Platforms P103/10/1517 and Mathematical and Engineering Approaches to Developing Reliable and Secure Concurrent and Distributed Computer Systems GD102/09/H042 and by the research programme Security-Oriented Research in Information Technology MSM 0021630528.

References

  1. 1.
    F.V. Andrade, M.C.M. Oliveira, A.O. Fernandes, C.J.N. Coelho, Sat-based equivalence checking based on circuit partitioning and special approaches for conflict clause reuse, in IEEE Design and Diagnostics of Electronic Circuits and Systems (IEEE Comp. Society, 2007), pp. 1–6Google Scholar
  2. 2.
    F.V. Andrade, L.M. Silva, A.O. Fernandes, in 26th International Conference on Computer Design, ICCD 2008. Improving SAT-based combinational equivalence checking through circuit preprocessing, 40–45 (2008)Google Scholar
  3. 3.
    Berkley Logic Synthesis and Verification Group: ABC: A System for Sequential Synthesis and verification. http://www.eecs.berkeley.edu/~alanmi/abc/
  4. 7.
    R.K. Brayton, G.D. Hachtel, C.T. McMullen, A.L. Sangiovanni-Vincentelli, Logic Minimization Algorithms for VLSI Synthesis. (Kluwer, Boston, MA, USA, 1984)zbMATHGoogle Scholar
  5. 5.
    J. Cong, K. Minkovich, Optimality study of logic synthesis for LUT-based FPGAs. IEEE Trans. Comput. Aided Des. Integ. Circuits Syst. 26(2), 230–239 (2007)CrossRefGoogle Scholar
  6. 6.
    S. Disch, C. Schollm, in Asia and South Pacific Design Automation Conference. Combinational equivalence checking using incremental SAT solving, output ordering, and resets (2007), pp. 938–943Google Scholar
  7. 7.
    R. Ebendt, G. Fey, R. Drechsler, Advanced BDD Optimization. (Springer, Berlin, 2000)Google Scholar
  8. 8.
    N. Een, A. Mishchenko, N. Sorensson, Applying logic synthesis for speeding up SAT, in Theory and Applications of Satisfiability Testing, LNCS, vol. 4501 (Springer, Berlin, 2007), pp. 272–286Google Scholar
  9. 9.
    N. Een, N. Sorensson, MiniSAT. http://minisat.se
  10. 10.
    P. Fiser, J. Schmidt, in Proceedings of 8th International Workshop on Boolean Problems. Small but nasty logic synthesis examples (2008), pp. 183–190Google Scholar
  11. 11.
    H. de Garis, in International Conference on Artificial Neural Networks and Genetic Algorithms ICANNGA’93. Evolvable Hardware—Genetic Programming of a Darwin Machine. Innsbruck, Austria (1993)Google Scholar
  12. 12.
    K. Glette, J. Torresen, M. Yasunaga, in Applications of Evolutinary Computing, EvoWorkshops 2007, LNCS, vol. 4448. An Online EHW Pattern Recognition System Applied to Face Image Recognition (Springer, 2007), pp. 271–280Google Scholar
  13. 13.
    E. Goldberg, M. Prasad, R. Brayton, in DATE ’01: Proceedings of the Conference on Design, Automation and Test in Europe. Using SAT for combinational equivalence checking (IEEE Press, Piscataway, NJ, USA, 2001), pp. 114–121Google Scholar
  14. 14.
    T.G.H. Gordon, P.J. Bentley, in Handbook of Nature-Inspired and Innovative Computing, ed. by A.Y. Zomaya. Evolving hardware (Springer, UK, 2006), pp. 387–432Google Scholar
  15. 15.
    T.G.W. Gordon, P.J. Bentley, in Proceedings of the 2002 NASA/DoD Conference on Evolvable Hardware. Towards development in evolvable hardware (IEEE Computer Society Press, Washington, DC, US 2002), pp. 241–250Google Scholar
  16. 16.
    G. Greenwood, A.M. Tyrrell, Introduction to Evolvable Hardware. (IEEE Press, New York, 2007)Google Scholar
  17. 17.
    P.C. Haddow, G. Tufte, P. van Remortel, in Proceedings of the 4th International Conference on Evolvable Systems: From Biology to Hardware, LNCS, vol. 2210. Shrinking the genotype: L-systems for EHW? (Springer, Berlin, 2001), pp. 128–139Google Scholar
  18. 18.
    S. Harding, J.F. Miller, W. Banzhaf, in 2009 IEEE Congress on Evolutionary Computation. Self Modifying Cartesian Genetic Programming: Parity (IEEE Press, New York, 2009), pp. 285–292Google Scholar
  19. 19.
    T. Higuchi, M. Iwata, D. Keymeulen, H. Sakanashi, M. Murakawa, I. Kajitani, E. Takahashi, K. Toda, M. Salami, N. Kajihara, N. Otsu, Real-world applications of analog and digital evolvable hardware. IEEE Trans. Evol. Comput. 3(3), 220–235 (1999)CrossRefGoogle Scholar
  20. 20.
    T. Higuchi, Y. Liu, X. Yao, Evolvable Hardware. (Springer, Berlin, 2006)zbMATHCrossRefGoogle Scholar
  21. 21.
    T. Higuchi, T. Niwa, T. Tanaka, H. Iba, H. de Garis, T. Furuya, in Proceedings of the 2nd International Conference on Simulated Adaptive Behaviour. Evolving Hardware with Genetic Learning: A First Step Towards Building a Darwin Machine (MIT Press, 1993), pp. 417–424Google Scholar
  22. 22.
    G. Hornby, A. Globus, D. Linden, J. Lohn, in Proc. 2006 AIAA Space Conference. Automated Antenna Design with Evolutionary Algorithms (AIAA, San Jose, CA, 2006), p. 8Google Scholar
  23. 23.
    K. Imamura, J.A. Foster, A.W. Krings, in Proceedings of the 2nd NASA/DoD Workshop on Evolvable Hardware. The Test Vector Problem and Limitations to Evolving Digital Circuits (IEEE Computer Society Press, 2000), pp. 75–79Google Scholar
  24. 24.
    T. Kalganova, J.F. Miller, in The First NASA/DoD Workshop on Evolvable Hardware. Evolving More Efficient Digital Circuits by Allowing Circuit Layout Evolution and Multi-Objective Fitness (IEEE Computer Society, Pasadena, California, 1999), pp. 54–63Google Scholar
  25. 25.
    H. Katebi, I.L. Markov, in Design, Automation and Test in Europe, DATE 2010. Large-Scale Boolean Matching (IEEE, 2010), pp. 771–776Google Scholar
  26. 26.
    P. Kaufmann, M. Platzner, Proceedings of Genetic and Evolutionary Computation Conference, GECCO 2008. Advanced Techniques for the Creation and Propagation of Modules in Cartesian Genetic Programming (ACM, 2008), pp. 1219–1226Google Scholar
  27. 27.
    D. Keymeulen, M. Durantez, K. Konaka, Y. Kuniyoshi, T. Higuchi, in Proceedings of the 1st International Conference on Evolvable Systems: From Biology to Hardware ICES’96, LNCS, vol. 1259, eds. by T. Higuchi, M. Iwata, W. Liu. An Evolutionary Robot Navigation System Using a Gate-Level Evolvable Hardware (Springer, Tsukuba, Japan, 1997), pp. 195–209Google Scholar
  28. 28.
    J.R. Koza, Genetic Programming II: Automatic Discovery of Reusable Programs. (MIT Press, Cambridge, MA, 1994)zbMATHGoogle Scholar
  29. 29.
    J.R. Koza, F.H. Bennett, D. Andre, M.A. Keane, Genetic Programming III: Darwinian Invention and Problem Solving. (Morgan Kaufmann Publishers, San Francisco, CA, 1999)zbMATHGoogle Scholar
  30. 30.
    J.R. Koza, M.A. Keane, M.J. Streeter, W. Mydlowec, J. Yu, G. Lanza, Genetic Programming IV: Routine Human-Competitive Machine Intelligence. (Kluwer, Dordrecht, 2003)zbMATHGoogle Scholar
  31. 31.
    D. Mange, M. Sipper, A. Stauffer, G. Tempesti, Towards robust integrated circuits: the embryonics approach. Proc. IEEE 88(4), 516–541 (2000)CrossRefGoogle Scholar
  32. 32.
    J.F. Miller, D. Job, V.K. Vassilev, Principles in the evolutionary design of digital circuits—part I. Genetic Programm. Evol. Mach. 1(1), 8–35 (2000)Google Scholar
  33. 33.
    J.F. Miller, S.L. Smith, Redundancy and computational efficiency in cartesian genetic programming. IEEE Trans. Evol. Comput. 10(2), 167–174 (2006)CrossRefGoogle Scholar
  34. 34.
    J.F. Miller, P. Thomson, in Proceedings of the 3rd European Conference on Genetic Programming EuroGP2000, LNCS, vol. 1802. Cartesian Genetic Programming (Springer, 2000), pp. 121–132Google Scholar
  35. 35.
    M. Murakawa, S. Yoshizawa, I. Kajitani, T. Furuya, M. Iwata, T. Higuchi, in Parallel Problem Solving from Nature—PPSN IV, LNCS, vol. 1141. Evolvable Hardware at Function Level (Springer, 1996), pp. 62–71Google Scholar
  36. 36.
    T. Pecenka, L. Sekanina, Z. Kotasek, Evolution of synthetic RTL benchmark circuits with predefined testability. ACM Trans. Des. Autom. Electron. Syst. 13(3), 1–21 (2008)CrossRefGoogle Scholar
  37. 37.
    R. Poli, J. Page, Solving high-order boolean parity problems with smooth uniform crossover, sub-machine code gp and demes. Genetic Programm. Evol. Mach. 1(1–2), 37–56 (2000)zbMATHCrossRefGoogle Scholar
  38. 38.
    L. Sekanina, in Applications of Evolutionary Computing—Proceedings of the 4th Workshop on Evolutionary Computation in Image Analysis and Signal Processing EvoIASP’02, LNCS, vol. 2279. Image Filter Design with Evolvable Hardware (Springer Verlag, Kinsale, Ireland, 2002), pp. 255–266Google Scholar
  39. 39.
    L. Sekanina, Evolvable Components: From Theory to Hardware Implementations. (Natural Computing Series, Springer, Berlin, 2004)zbMATHGoogle Scholar
  40. 40.
    E.M. Sentovich, K.J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha, H. Savoj, P.R. Stephan, R.K. Brayton, A. Sangiovanni-vincentelli, Sis: A system for sequential circuit synthesis. Technical report, University California, Berkeley (1992)Google Scholar
  41. 41.
    A.P. Shanthi, R. Parthasarathi, Practical and scalable evolution of digital circuits. Appl. Soft Comput. 9(2), 618–624 (2009)CrossRefGoogle Scholar
  42. 42.
    K.O. Stanley, R. Miikkulainen, A taxonomy for artificial embryogeny. Artif. Life 9, 93–130 (2003)CrossRefGoogle Scholar
  43. 43.
    E. Stomeo, T. Kalganova, C. Lambert, Generalized disjunction decomposition for evolvable hardware. IEEE Trans. Syst. Man Cybernet. Part B 36(5), 1024–1043 (2006)CrossRefGoogle Scholar
  44. 44.
    J. Torresen, in Proceedings of the 2nd International Conference on Evolvable Systems: From Biology to Hardware ICES’98, LNCS, vol. 1478, eds. by M. Sipper, D. Mange, A. Perez-Uribe. A Divide-and-Conquer Approach to Evolvable Hardware (Springer, Lausanne, Switzerland, 1998), pp. 57–65Google Scholar
  45. 45.
    J. Torresen, A scalable approach to evolvable hardware. Genetic Programm. Evol. Mach. 3(3), 259–282 (2002)zbMATHCrossRefGoogle Scholar
  46. 46.
    G.S. Tseitin, in Studies in Constructive Mathematics and Mathematical Logic, Part II. On the Complexity of Derivation in Propositional Calculus (1968), pp. 115–125Google Scholar
  47. 47.
    G. Tufte, P.C. Haddow, Towards development on a silicon-based cellular computing machine. Nat. Comput. 4(4), 387–416 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  48. 48.
    Z. Vasicek, M. Zadnik, L. Sekanina, J. Tobola, in Proceedings of the 8th Conference on Evolvable Systems: From Biology to Hardware, LNCS, vol. 5216. On Evolutionary Synthesis of Linear Transforms in FPGA (Springer, Berlin, 2008), pp. 141–152Google Scholar
  49. 49.
    V. Vassilev, D. Job, J.F. Miller, in Proceedings of the 2nd NASA/DoD Workshop on Evolvable Hardware, eds. by J. Lohn, A. Stoica, D. Keymeulen, S. Colombano. Towards the Automatic Design of More Efficient Digital Circuits (IEEE Computer Society, Los Alamitos, CA, USA, 2000), pp. 151–160Google Scholar
  50. 50.
    M.N. Velev, Efficient translation of boolean formulas to CNF in formal verification of microprocessors, in Asia South Pacific Design Automation Conference (IEEE Computer Society, 2004), pp. 310–315Google Scholar
  51. 51.
    J.A. Walker, J.F. Miller, The automatic acquisition, evolution and re-use of modules in cartesian genetic programming. IEEE Trans. Evol. Comput. 12(4), 397–417 (2008)CrossRefGoogle Scholar
  52. 52.
    S. Yanushkevich, D.M. Miller, V.P. Shmerko, R.S. Stankovic, Decision Diagram Techniques for Micro- and Nanoelectronic Design Handbook. (CRC, Boca Raton, 2006)Google Scholar
  53. 53.
    X. Yao, T. Higuchi, Promises and challenges of evolvable hardware. IEEE Trans. Syst. Man Cybernet. Part C 29(1), 87–97 (1999)CrossRefGoogle Scholar
  54. 54.
    R. Zebulum, M. Pacheco, M. Vellasco, Evolutionary Electronics—Automatic Design of Electronic Circuits and Systems by Genetic Algorithms. (The CRC Press International Series on Computational Intelligence, Boca Raton, 2002)Google Scholar
  55. 55.
    S. Zhan, J.F. Miller, A.M. Tyrrell, in Proc. of the 8th Int. Conference on Evolvable Systems: From Biology to Hardware, LNCS,, vol. 5216. A Developmental Gene Regulation Network for Constructing Electronic Circuits (Springer, Berlin, 2008), pp. 177–188Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Faculty of Information TechnologyBrno University of TechnologyBrnoCzech Republic

Personalised recommendations