Genetic Programming and Evolvable Machines

, Volume 10, Issue 2, pp 181–228 | Cite as

A review of procedures to evolve quantum algorithms

Original Paper

Abstract

There exist quantum algorithms that are more efficient than their classical counterparts; such algorithms were invented by Shor in 1994 and then Grover in 1996. A lack of invention since Grover’s algorithm has been commonly attributed to the non-intuitive nature of quantum algorithms to the classically trained person. Thus, the idea of using computers to automatically generate quantum algorithms based on an evolutionary model emerged. A limitation of this approach is that quantum computers do not yet exist and quantum simulation on a classical machine has an exponential order overhead. Nevertheless, early research into evolving quantum algorithms has shown promise. This paper provides an introduction into quantum and evolutionary algorithms for the computer scientist not familiar with these fields. The exciting field of using evolutionary algorithms to evolve quantum algorithms is then reviewed.

Keywords

Evolving quantum algorithms Quantum computing Evolutionary algorithms Quantum algorithms Genetic algorithms Genetic programming 

References

  1. 1.
    T. Bäck, Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms (Oxford Univeristy Press, 1996)Google Scholar
  2. 2.
    T. Bäck, D.B. Fogel, Z. Michalewicz (ed.), Evolutionary Computation 1: Basic Algorithms and Operators (Institute of Physics, 2000)Google Scholar
  3. 3.
    T. Bäck, D.B. Fogel, Z. Michalewicz (ed.), Evolutionary Computation 2: Advanced Algorithms and Operators (Institute of Physics, 2000)Google Scholar
  4. 4.
    W. Banzhaf, P. Nordin, R. Keller, F. Francone, Genetic Programming—An Introduction (dpunkt Heidelberg and Morgan Kaufmann Publishers, San Francisco, 1998)Google Scholar
  5. 5.
    A. Barenco, A universal two-bit gate for quantum computation, in Proceedings of the Royal Society of London A, vol. 449 (1995), pp. 679–683Google Scholar
  6. 6.
    A. Barenco, C.H. Bennett, R. Cleve, D.P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. Smolin, H. Weinfurter, Elementary gates for quantum computation. Phys. Rev. A 52(5), 3457–3467 (1995)CrossRefGoogle Scholar
  7. 7.
    H. Barnum, H.J. Bernstein, L. Spector, A quantum circuit for OR. ArXiv Quantum Physics e-prints quant-ph/9907056v3 (October 1999)Google Scholar
  8. 8.
    H. Barnum, H.J. Bernstein, L. Spector, Quantum circuits for OR and AND of ORs. J. Phys. A Math. Gen. 33(45), 8047–8057 (November 2000)Google Scholar
  9. 9.
    R.K. Belew, M.D. Vose (eds.), Foundations of Genetic Algorithms, vol. 4 (Morgan Kaufmann, 1997)Google Scholar
  10. 10.
    P. Benioff, The computer as a physical system: a microscopic quantum mechanical hamiltonian model of computers as represented by turing machines. J. Stat. Phys. 22(5), 563–591 (1980)CrossRefMathSciNetGoogle Scholar
  11. 11.
    C.H. Bennett, Logical reversibility of computation. IBM J. Res. Dev. 17, 525–532 (1973)MATHCrossRefGoogle Scholar
  12. 12.
    C.H. Bennett, E. Bernstein, G. Brassard, U.V. Vazirani, Strengths and weaknesses of quantum computing. Soc. Ind. Appl. Math. J. Comput. 26, 1510–1523 (1994)MathSciNetGoogle Scholar
  13. 13.
    E. Bernstein, U.V. Vazirani, Quantum complexity theory, in Proceedings of the 25th Annual ACM Symposium on Theory of Computation (1993), pp. 11–20Google Scholar
  14. 14.
    T. Blickle, Tournament selection, in Evolutionary Computation 1: Basic Algorithms and Operators, ed. by T. Bäck, D.B. Fogel, Z. Michalewicz (Institute of Physics, 2000), pp. 181–186Google Scholar
  15. 15.
    S. Bornholdt, Genetic algorithms, in Non-Standard Computation, ed. by T. Gramß, S. Bornholdt, M. Groß, M. Mitchell, T. Pellizzari (WILEY-VCH, Weinheim, Germany, 1998), pp. 141–178Google Scholar
  16. 16.
    D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibi, H. Weinfurther, A. Zeilinger, Experimental quantum teleportation. Nature 390, 575–579 (1997)CrossRefGoogle Scholar
  17. 17.
    S.L. Braunstein, Quantum computation: a tutorial. Available from author’s homepage at the Department of Computer Science, York University: http://www-users.cs.york.ac.uk/~schmuel/, 1995
  18. 18.
    C.S. Calude, De-quantizing the solution of Deutsch’s problem. Int. J. Quantum Inf. 5(3), 409–415 (June 2007). Preprint available at: http://arxiv.org/abs/quant-ph/0610220
  19. 19.
    J.A. Clark, S. Stepney, Fusing natural computational paradigms for cryptanalysis. Or, using heuristic search to bring cryptanalysis problems within quantum computational range, in Proceedings of the 2006 Congress on Evolutionary Computation (CEC2006) (2006), pp. 200–206Google Scholar
  20. 20.
    R. Cleve, A. Ekert, C. Macchiavello, M. Mosca, Quantum algorithms revisited, in Proceedings of the Royal Society of London A, vol. 454 (1998), pp. 339–354Google Scholar
  21. 21.
    N.L. Cramer A representation for the adaptive generation of simple sequential programs, in Proceedings of an International Conference on Genetic Algorithms and their Applications, ed. by J.J. Grefenstette (July 1985), pp. 183–187Google Scholar
  22. 22.
    C. Darwin, On the Origin of Species by Means of Natural Selection or the Preservation of Favoured Races in the Struggle for Life (Murray, London, 1859)Google Scholar
  23. 23.
    K. Deb, Introduction into selection, in Evolutionary Computation 1: Basic Algorithms and Operators, ed. by T. Bäck, D.B. Fogel, Z. Michalewicz (Institute of Physics, 2000), pp. 166–171Google Scholar
  24. 24.
    D. Deutsch, Quantum theory, the church-turing principle and the universal quantum computer 400, in Proceedings of the Royal Society of London A (1985), pp. 97–117Google Scholar
  25. 25.
    D. Deutsch, Quantum computational networks, in Proceedings of the Royal Society of London A 425 (1989), pp. 73–90Google Scholar
  26. 26.
    D. Deutsch, R. Jozsa Rapid solution of problems by quantum computation, in Proceedings of the Royal Society of London Series A, vol. A439 (1992), pp. 553–558Google Scholar
  27. 27.
    D. Dickmanns, J. Schmidhuber, A. Winklhofer, Der genetische algorithmus: Eine implementierung in prolog. Tech. rep. (Institut für Informatik, Technische Universität Mänchen, 1987)Google Scholar
  28. 28.
    S. Ding, Z. Jin, Q. Yang, Evolving quantum oracles with hybrid quantum-inspired evolutionary algorithm. ArXiv Quantum Physics e-prints quant-ph/0610105 (October 2006)Google Scholar
  29. 29.
    P. Dirac, The Principles of Quantum Mechanics, 4th edn. (Oxford University Press, 1958)Google Scholar
  30. 30.
    R. Feynman, Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982) Google Scholar
  31. 31.
    R.P. Feynman, There’s plenty of room at the bottom: an invitation to enter a new field of physics. Speech at the Annual Meeting of the American Physical Society, December 1959. It is available online at http://www.zyvex.com/nanotech/feynman.html
  32. 32.
    R.P. Feynman, D.H. Gilbert DH (eds.), Miniaturization (Reinhold, New York, 1961), pp. 282–295Google Scholar
  33. 33.
    D.B. Fogel, Phenotypes, genotypes, and operators in evolutionary computation, in Computational Intelligence: Theory and Applications (5th Fuzzy Days Berlin, Springer-Verlag, 1995), pp. 337–342Google Scholar
  34. 34.
    G.D. Forney Jr., S. Guha, Simple rate-1/3 convolutional and tail-biting quantum error-correcting codes, in Proceedings of the IEEE International Symposium on Information Theory (September 2005), pp. 1028–1032Google Scholar
  35. 35.
    L. Fortnow, J. Rogers, Complexity limitations on quantum computation. J. Comput. Syst. Sci. 59(2), 240–252 (1999) (Special issue for selected papers from the 13th IEEE Conference on Computational Complexity)Google Scholar
  36. 36.
    A.A. Freitas, Data Mining and Knowledge Discovery with Evolutionary Algorithms (Springer-Verlag, 2002)Google Scholar
  37. 37.
    A. Galindo, M. Martín-Delgado, Information and computation: classical and quantum aspects. Rev Modern Phys. 74(2), 347–423 (May 2002). Preprint available at: http://arxiv.org/abs/quant-ph/0112105
  38. 38.
    G.A. Giraldi, R. Portugal, R.N. Thess, Genetic algorithms and quantum computation. ArXiv Quantum Physics e-prints quant-ph/0610105 (March 2004)Google Scholar
  39. 39.
    D.E. Goldberg, Genetic Algorithms in Search, Optimisation, and Machine Learning (Addison Wesley, 1989)Google Scholar
  40. 40.
    T. Gramß (1998) The theory of quantum computation: an introduction, in Non-Standard Computation ed. by T. Gramß, S. Bornholdt, M. Groß, M. Mitchell, T. Pellizzari (WILEY-VCH, Weinheim, Germany), pp. 141–178Google Scholar
  41. 41.
    J. Grefenstette, Proportional selection and sampling algorithms, in Evolutionary Computation 1: Basic Algorithms and Operators, ed. by T. Bäck, D.B. Fogel, Z. Michalewicz (Institute of Physics, 2000), pp. 172–180Google Scholar
  42. 42.
    J. Grefenstette, Rank-based selection, in Evolutionary Computation 1: Basic Algorithms and Operators, ed. by T. Bäck, D.B. Fogel, Z. Michalewicz (Institute of Physics, 2000), pp. 187–194Google Scholar
  43. 43.
    M. Groß, Molecular computing, in Non-Standard Computation, ed. by T. Gramß, S. Bornholdt, M. Groß, M. Mitchell, T. Pellizzari (WILEY-VCH, Weinheim, Germany, 1998), pp. 15–58CrossRefGoogle Scholar
  44. 44.
    L.K. Grover, A fast quantum mechanical algorithm for database search, in Proceedings of the 18th Annual ACM Symposium on the History of Computing (Philadelphia, Pennsylvania, May 1996), pp. 212–219Google Scholar
  45. 45.
    S. Gudder, Quantum automata: an overview. Int. J. Theor. Phys. 28(9), 2261–2282 (1999)CrossRefMathSciNetGoogle Scholar
  46. 46.
    H. Häffner, W. Hänsel, C.F. Roos, J. Benhelm, D. Chek-al-kar, M. Chwalla, T. Körber, U.D. Rapol, M. Riebe, P.O. Schmidt, C. Becher, O. Gühne, W. Dür, R. Blatt, Scalable multiparticle entanglement of trapped ions. Nature 438(1), 643–646 (December 2005)Google Scholar
  47. 47.
    Y. Hardy, W.-H. Steeb, Entangled quantum states and a C++ implementation. Int. J. Modern Phys. C 11, 69–77 (2000)MATHCrossRefMathSciNetGoogle Scholar
  48. 48.
    Y. Hardy, W.-H. Steeb, Classical and Quantum Computing, with C++ and Java Simulations (Birkhäuser Verlag Berlin, Germany, 2001)MATHGoogle Scholar
  49. 49.
    T. Hogg, Solving highly constrained search problems with quantum computers. J. Artif. Intell. Res. 10, 39–66 (1999)MATHMathSciNetGoogle Scholar
  50. 50.
    J.H. Holland, Adaptation in Natural and Artificial Systems (The MIT Press, Cambridge, 1975)Google Scholar
  51. 51.
    R. Huber, T. Schell, Mixed size tournament selection. Soft Comput. Fus. Found. Methodol. Appl. 6(6), 449–455 (September 2002)Google Scholar
  52. 52.
    T.A. Hungerford, Algebra (Springer-Verlag, New York, 1974)MATHGoogle Scholar
  53. 53.
    B.A. Julstrom It’s all the same to me: Revisiting rank-based probabilities and tournaments, in Proceedings of the Congress on Evolutionary Computation, vol. 2 (IEEE Press, Piscataway, New Jersey, 1999), pp. 1501–1505Google Scholar
  54. 54.
    W. Kantschik, W. Banzhaf, Linear-Tree GP and its comparison with other GP structures, in Genetic Programming, Proceedings of EuroGP’2001, ed. by J.F. Miller, M. Tomassini, P.L. Lanzi, C. Ryan, A.G.B. Tettamanzi, W.B. Langdon. Lecture Notes in Computer Science, vol. 2038 (Springer-Verlag, 2001), pp. 302–312Google Scholar
  55. 55.
    W. Kantschik, W. Banzhaf, Linear-graph GP—a new GP structure, in Genetic Programming, Proceedings of EuroGP’2002, ed. by J.A. Foster, E. Lutton, J. Miller, C. Ryan, A.G.B. Tettamanzi. Lecture Notes in Computer Science, vol. 2278 (Springer-Verlag, 2002), pp. 83–92Google Scholar
  56. 56.
    M.H.A. Khan, M. Perkowski, Genetic algorithm based synthesis of multi-output ternary functions using quantum cascade of generalized ternary gates, in Proceedings of 2004 Congress on Evolutionary Computation (June 2004)Google Scholar
  57. 57.
    J.R. Koza, Genetic Programming: On the Programming of Computers by Means of Natural Selection (The MIT Press, Cambridge 1992)MATHGoogle Scholar
  58. 58.
    J.R. Koza, Genetic Programming II: Automatic Discovery of Reusable Programs (The MIT Press, Cambridge, 1994)MATHGoogle Scholar
  59. 59.
    J.R. Koza, F.H. Bennett III, D. Andre, M.A. Keane, Genetic Programming III: Darwinian Invention and Problem Solving. (Morgan Kaufmann, 1999)Google Scholar
  60. 60.
    J.R. Koza, M.A. Keane, M.J. Streeter, W. Mydlowec, J. Yu, G. Lanza, Genetic Programming IV: Routine Human-Competitive Machine Intelligence (Kluwer Academic Publishers, 2003)Google Scholar
  61. 61.
    O. Landry, Introduction to quantum computing. From Physics Department of McGill University, April 2004 (It appears to be now unavailable on the Internet, but the authors of this paper have a hard copy available upon request)Google Scholar
  62. 62.
    W.B. Langdon, T. Soule, R. Poli, Foster, J.A. The evolution of size and shape, in Advances in Genetic Programming: Volume 3, ed. by L. Spector, W.B. Langdon, U.-M. O-Reilly, P.J. Angeline (The MIT Press, 1999), pp. 163–190Google Scholar
  63. 63.
    D. Leibfried, E. Knill, S. Seidelin, J. Britton, R.B. Blakestad, J. Chiaverini1, D.B. Hume, W.M. Itano, J.D. Jost, C. Langer, R. Ozeri, R. Reichle, D.J. Wineland, Creation of a six-atom ’Schrödinger cat’ state. Nature 438(1), 639–642 (December 2005)Google Scholar
  64. 64.
    A. Leier, Evolution of Quantum Algorithms Using Genetic Programming, PhD thesis, University of Dortmund, Department of Computer Science, 2004Google Scholar
  65. 65.
    A. Leier, W. Banzhaf, Evolving Hogg’s quantum algorithm using linear-tree GP, in Proceedings of the Genetic and Evolutionary Computation Conference (GECCO–03) (Chicago, 12–16 July 2003), ed. by E. Cantú-Paz, J.A. Foster, K. Deb, D. Davis, R. Roy, U.-M. O’Reilly, H.-G. Beyer, R. Standish, G. Kendall, S. Wilson, M. Harman, J. Wegener, D. Dasgupta, M.A. Potter, A.C. Schultz, K. Dowsland, N. Jonoska, J. Miller. LNCS, vol. 2723 (Springer-Verlag), pp. 390–400Google Scholar
  66. 66.
    A. Leier, W. Banzhaf, Exploring the search space of quantum programs, in Proceedings of the 2003 Congress on Evolutionary Computation (CEC2003), ed. by R. Sarker, R. Reynolds, H. Abbass, K.C. Tan, B. McKay, D. Essam, T. Gedeon (IEEE Press, December 2003), pp. 170–177Google Scholar
  67. 67.
    A. Leier, W. Banzhaf, Comparison of selection strategies for evolutionary quantum circuit design, in Proceedings of the Genetic and Evolutionary Computation Conference (GECCO–04). Lecture Notes in Computer Science (Springer, 2004), pp. 557–568Google Scholar
  68. 68.
    A.K. Lenstra, H.W. Lenstra Jr., The Development of the Number Field Sieve. Lecture Notes in Mathematics, vol. 1554 (Springer-Verlag, 1993)Google Scholar
  69. 69.
    D. Loss, D. DiVincenzo, Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998)CrossRefGoogle Scholar
  70. 70.
    C. Lu, X. Zhou, O. Gühne, W. Gao, J. Zhang, Z. Yuan, A. Goebel, T. Yang, J. Pan, Experimental entanglement of six photons in graph states. Nature Phys. 3, 91–95 (2007)CrossRefGoogle Scholar
  71. 71.
    M. Lukac, M. Perkowski, Evolving quantum circuits using genetic algorithms, in Proceedings of the 2002 NASA/DOD Conference on Evolvable Hardware (2002), pp. 177–185Google Scholar
  72. 72.
    M. Lukac, M. Perkowski, Evolutionary approach to quantum symbolic logic synthesis, in Proceedings of the 2008 IEEE Congress on Evolutionary Computation (CEC2008) (June 2008), pp. 3374–3380Google Scholar
  73. 73.
    M. Lukac, M. Perkowski, P. Kerntopf, M. Pivtoraiko, M. Folgheraiter, D. Lee, H. Kim, W. Hwuangbo, J. wook Kim, Y.W. Choi, A hierarchical approach to computer aided design of quantum circuits, in Proceedings of the 6th International Symposium on Representations and Methodology of Future Computing Technology (2003), pp. 201–209Google Scholar
  74. 74.
    M. Lukac, M.A. Perkowski, H. Goi, M. Pivtoraiko, C. Hyo Yu, K. Chung, H. Jeech, B. Kim, Y. Kim, Evolutionary approach to quantum and reversible circuits synthesis. Artif. Intell. Rev. 20(3–4), 361–417 (2003)MATHCrossRefGoogle Scholar
  75. 75.
    S. Luke, L. Spector, A revised comparison of crossover and mutation in genetic programming, in Proceedings of the Third Annual Genetic Programming Conference (Morgan Kaufmann, San Fransisco, 1998), pp. 208–213Google Scholar
  76. 76.
    P. Massey, J.A. Clark, S. Stepney, Evolving quantum circuits and programs through genetic programming, in Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2004). Lecture Notes in Computer Science, vol. 3103 (Springer, 2004), pp. 569–580. Winner of the “Best in GP Stream” award, GECCO 2004Google Scholar
  77. 77.
    P. Massey, J.A. Clark, S. Stepney, Evolution of a human-competitive Quantum Fourier Transform algorithm using genetic programming, in Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2005) (ACM Press, 2005), pp. 1657–1664. (Ref. 78 is a revised and extended version of this paper)Google Scholar
  78. 78.
    P. Massey, J.A. Clark, S. Stepney Human-competitive evolution of quantum computing artefacts by genetic programming. Evol. Comput. J. 14(1), 21–40 (2006) (this is a revised and extended version of Ref. 77)Google Scholar
  79. 79.
    P.S. Massey, Searching for Quantum Software. PhD thesis, University of York, Department of Computer Science, 2006. Available at http://www.cs.york.ac.uk/ftpdir/reports/YCST-2007-11.pdf
  80. 80.
    Z. Michalewicz, Genetic algorithms + Data structures = Evolution Programs, 3rd edn. (Springer-Verlag, New York, 1996)Google Scholar
  81. 81.
    M. Mitchell, An Introduction to Genetic Algorithms (The MIT Press, 1996)Google Scholar
  82. 82.
    P. Neumann, N. Mizuochi, F. Rempp, P. Hemmer, H. Watanabe, S. Yamasaki, V. Jacques, T. Gaebel, F. Jelezko, J. Wrachtrup, Multipartite entanglement among single spins in diamond. Science 320(5881), 1326–1329 (6 June 2008)Google Scholar
  83. 83.
    M.A. Nielsen, I.L. Chuang, Quantum computation and Quantum Information (Cambridge University Press, Cambridge 2000)MATHGoogle Scholar
  84. 84.
    T. Pellizzari, Quantum computers: first steps towards a realization, in Non-Standard Computation, ed. by T. Gramß, S. Bornholdt, M. Groß, M. Mitchell, T. Pellizzari (WILEY-VCH, Weinheim, Germany, 1998), pp. 141–178Google Scholar
  85. 85.
    A.O. Pittenger, An Introduction to Quantum Computing Algorithms (Birkhäuser, Boston 2000)MATHGoogle Scholar
  86. 86.
    G. Păun, G. Rozenberg, A. Salomaa, DNA Computing: New Computing Paradigms (Springer-Verlag, 1998)Google Scholar
  87. 87.
    G. Păun, G. Rozenberg, A. Salomaa, in DNA Computing: New Computing Paradigms (Springer-Verlag, 1998), pp. 1–6 Introduction; pp. 43–74 Beginnings of Molecular ComputingGoogle Scholar
  88. 88.
    T. Reid, On the evolutionary design of quantum circuits. Master’s thesis, Waterloo, Ontario, Canada, 2005Google Scholar
  89. 89.
    M.J. Rethinam, A.K. Javali, E.C. Behrman, J.E. Steck, S.R. Skinner, A genetic algorithm for finding pulse sequences for NMR quantum computing. ArXiv Quantum Physics e-prints quant-ph/0404170v1 (April 2004)Google Scholar
  90. 90.
    E. Rieffel, W. Polak, An introduction to quantum computing for non-physicists. ACM Comput. Surv. 32(3), 300–335 (2000)CrossRefGoogle Scholar
  91. 91.
    B.I.P. Rubinstein, Evolving quantum circuits using genetic programming, in Proceedings of the 2001 IEEE Congress on Evolutionary Computation (CEC2001) (IEEE Press, 2001), pp. 114–121Google Scholar
  92. 92.
    A. Sabry, Modeling quantum computing in Haskell, in Haskell ’03: Proceedings of the ACM SIGPLAN workshop on Haskell (ACM Press, New York, NY, USA, 2003), pp. 39–49Google Scholar
  93. 93.
    Y. Shi, Both Toffoli and Controlled-NOT need little help to do universal quantum computation. ArXiv Quantum Physics e-prints quant-ph/0205115v2 (May 2002)Google Scholar
  94. 94.
    P.W. Shor, Algorithms for quantum computation: discrete log and factoring, in Proceedings of the 35th Annual Symposium on Foundations of Computer Science (Institute of Electrical and Electronic Engineers Computer Society Press, November 1994), pp. 124–134Google Scholar
  95. 95.
    P.W. Shor, Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, 2493–2496 (1995)CrossRefGoogle Scholar
  96. 96.
    P.W. Shor, Introduction to quantum algorithms. Notes for talk given for the short course at the January 2000 American Math Society meeting, 2000Google Scholar
  97. 97.
    D. Simon, On the power of quantum computation, in Proceedings of the 35th annual IEEE symposium on the foundations of computer science (FOCS) (IEEE, Computer Society Press, Santa Fee, USA, November 1994), pp. 116–123Google Scholar
  98. 98.
    S.F. Smith, A Learning System Based on Genetic Adaptive Algorithms. PhD thesis, University of Pittsburgh, 1980Google Scholar
  99. 99.
    D.A. Sofge, Prospective algorithms for quantum evolutionary computation, in Proceedings of the Second Quantum Interaction Symposium (QI-2008)(2008). Available from ArXiv e-prints at http://arxiv.org/abs/0804.1133v1
  100. 100.
    L. Spector, The evolution of arbitrary computational processes. IEEE Intell. Syst. 15(3), 80–83 (May/June 2000)Google Scholar
  101. 101.
    L. Spector, Automatic Quantum Computer Programming: A Genetic Programming Approach. Genetic Programming Series. (Kluwer Academic Publishers, 2004)Google Scholar
  102. 102.
    L. Spector, H. Barnum, H.J. Bernstein, Genetic programming for quantum computers, in Genetic Programming 1998: Proceedings of the Thurd Annual Conference, ed. by J.R. Koza, W. Banzhaf, K. Chellapilla, K. Deb, M. Dorigo, D.B. Fogel, M.H. Garzon, D.E. Goldberg, H. Iba, R.L. Riolo (1998), pp. 365–374Google Scholar
  103. 103.
    L. Spector, H. Barnum, H.J. Bernstein, N. Swamy, Finding a better-than-classical quantum AND/OR algorithm using genetic programming, in Proceedings of the 1999 Congress on Evolutionary Computation (IEEE, 1999), pp. 2239–246Google Scholar
  104. 104.
    L. Spector, H. Barnum, H.J. Bernstein, N. Swamy, Quantum computing applications of genetic programming, in Advances in Genetic Programming: Volume 3, ed. by L. Spector, W.B. Langdon, U.-M. O-Reilly, P.J. Angeline (The MIT Press, 1999), pp. 135–160Google Scholar
  105. 105.
    L. Spector, H.J. Bernstein, Communication capacities of some quantum gates, discovered in part through genetic programming, in Proceedings of the 6th International Conference on Quantum Communication, Measurement, and Computing (QCMC), ed. by J.H. Shapiro, O. Hirota (Rinton Press, 2003), pp. 500–503. Preprint available at http://hampshire.edu/lspector/pubs/spector-QCMC-prepress.pdf
  106. 106.
    L. Spector, W.B. Langdon, U.-M. O-Reilly, P.J. Angeline (eds.), Advances in Genetic Programming: Volume 3 (The MIT Press, 1999)Google Scholar
  107. 107.
    R. Stadelhofer, Evolving Blackbox Quantum Algorithms using Genetic Programming. PhD thesis, University of Dortmund, Department of Physics (2006)Google Scholar
  108. 108.
    R. Stadelhofer, W. Banzhaf, D. Suter, Quantum and classical parallelism in parity algorithms for ensemble quantum computers. Phys. Rev. A 71, 032345-1–032345-6 (2005)Google Scholar
  109. 109.
    R. Stadelhofer, W. Banzhaf, D. Suter, Evolving blackbox quantum algorithms using genetic programming. Artif. Intell. Eng. Des. Anal. Manuf. 22, 285–297 (2008)Google Scholar
  110. 110.
    S. Stepney, J.A. Clark, Evolving quantum programs and protocols, in Handbook of Theoretical and Computational Nanotechnology, volume 3, Quantum and Molecular Computing, Quantum Simulations, ch. 3, ed. by M. Rieth, W. Schommers (American Scientific Publishers, 2006), pp. 113–160Google Scholar
  111. 111.
    S. Stepney, J.A. Clark, Searching for quantum programs and quantum protocols: a review. J. Comput. Theor. Nanosci. 5, 942–969 (May, 2008)Google Scholar
  112. 112.
    P. Surry, N. Radcliffe, A formalism for real-parameter evolutionary algorithms and directed recombination. in Foundations of Genetic Algorithms, vol. 4, ed. by R.K. Belew, M.D. Vose (Morgan Kaufmann, 1997)Google Scholar
  113. 113.
    A. Teller, M. Veloso, PADO: a new learning architecture for object recognition, in Symbolic Visual Learning, ed. by K. Ikeuchi M. Veloso (Oxford University Press, 1996), pp. 81–116Google Scholar
  114. 114.
    M. Udrescu, L. Prodan, M. Vlăduţiu, Implementing quantum genetic algorithms: a solution based on grover’s algorithm, in Proceedings of the Third Conference on Computing frontiers (ACM Press, New York, 2006), pp. 71–82Google Scholar
  115. 115.
    W. van Dam, A universal quantum cellular automaton, in Proceedings of PhysComp96 (New England Complex Systems Institute, 1996), pp. 323–331Google Scholar
  116. 116.
    R. Van Meter, K. Binkley, Compiling quantum programs using genetic algorithms, in The Wild and Crazy Idea Session IV, abstracts, part of 11th International Conference on Architectural Support for Programming Languages and Operating Systems (October 2004)Google Scholar
  117. 117.
    A. van Tonder, A lambda calculus for quantum computation. SIAM J. Comput. 33(5), 1109–1135 (2004)MATHCrossRefMathSciNetGoogle Scholar
  118. 118.
    L.M.K. Vandersypen, M. Steffen, G. Breyta, C.S. Yannoni, M.H. Sherwood, I.L. Chuang, Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance. Nature 414, 883–887 (December 2001)Google Scholar
  119. 119.
    M.D. Vose, The Simple Genetic Algorithm: Foundations and Theory (The MIT Press, 1999)Google Scholar
  120. 120.
    Watrous, J. Relationships between quantum and classical space-bounded complexity classes, in 13th Annual IEEE Conference on Computational Complexity (June 1998), pp. 210–227Google Scholar
  121. 121.
    C.P. Williams, S.H. Clearwater, Explorations in Quantum Computing (Springer-Verlag, 1998)Google Scholar
  122. 122.
    C.P. Williams, A.G. Gray, Automated design of quantum circuits, in QCQC ’98: Selected papers from the First NASA International Conference on Quantum Computing and Quantum Communications, ed. by C.P. Williams. Lecture Notes in Computer Science, vol. 1509 (Springer-Verlag, 1998), pp. 113–125Google Scholar
  123. 123.
    W.K. Wooters, W.H. Zurek, A single quantum cannot be cloned. Nature 299, 802–803 (1982)Google Scholar
  124. 124.
    T. Yabuki, H. Iba, Genetic algorithms for quantum circuit design, evolving a simpler teleportation circuit, in Proceedings of the Genetic and Evolutionary Computation Conference (GECCO–00) (Morgan Kauffman Publishers, San Francisco, July 2000), pp. 421–425Google Scholar
  125. 125.
    Q. Yang, The research of a hybrid quantum-inspired evolutionary algorithm. Master’s thesis, Wuhan University, China, 2006Google Scholar
  126. 126.
    A. Yao, Quantum circuit complexity, in Proceedings of the 34th Annual Symposium on the Foundations of Computer Science (IEEE Computer Society Press, Los Alamitos, USA, 1993), pp. 352–361Google Scholar
  127. 127.
    W.H. Zurek, Decoherence and the transition from quantum to classical. Physics Today 44, 36–44 (1991)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.School of Information TechnologyBond UniversityRobinaAustralia

Personalised recommendations