Genetic Programming and Evolvable Machines

, Volume 10, Issue 2, pp 97–110 | Cite as

Incorporating characteristics of human creativity into an evolutionary art algorithm

Original Paper

Abstract

A perceived limitation of evolutionary art and design algorithms is that they rely on human intervention; the artist selects the most aesthetically pleasing variants of one generation to produce the next. This paper discusses how computer generated art and design can become more creatively human-like with respect to both process and outcome. As an example of a step in this direction, we present an algorithm that overcomes the above limitation by employing an automatic fitness function. The goal is to evolve abstract portraits of Darwin, using our 2nd generation fitness function which rewards genomes that not just produce a likeness of Darwin but exhibit certain strategies characteristic of human artists. We note that in human creativity, change is less choosing amongst randomly generated variants and more capitalizing on the associative structure of a conceptual network to hone in on a vision. We discuss how to achieve this fluidity algorithmically.

Keywords

Creative evolutionary systems Mechanisms of creativity Cognitive science Evolutionary art Genetic programming 

References

  1. 1.
    N. Andreasen, The Creating Brain: The Neuroscience of Genius (Dana Press, New York, 2005)Google Scholar
  2. 2.
    L. Ashmore, J. Miller, Evolutionary Art with Cartesian Genetic Programming. Technical Online Report, http://www.emoware.org/evolutionary_art.asp, 2004. Accessed 30 January 2005
  3. 3.
    E. Baker, Evolving Line Drawings, in Proceedings of the 5th International Conference on Genetic Algorithms, ed. by S. Forrest (Morgan Kaufmann, San Francisco, CA, 1993), p. 627Google Scholar
  4. 4.
    P. Bentley, D. Corne (eds.), Creative Evolutionary Systems (Morgan Kaufmann, San Francisco, CA, 2002)Google Scholar
  5. 5.
    T. Dartnell, Artificial intelligence and creativity: an introduction. Artif. Intell. Simul. Intell. Quart. 85 (1993)Google Scholar
  6. 6.
    S. DiPaola, Painterly rendered portraits from photographs using a knowledge-based approach, in Proceedings of Human Vision and Imaging Conference XII (International Society for Optical Engineering, San Jose, CA, 2007)Google Scholar
  7. 7.
    J. Feinstein, The Nature of Creative Development (Stanford University Press, Stanford, CA, 2006)Google Scholar
  8. 8.
    G.J. Feist, The influence of personality on artistic and scientific creativity, in Handbook of Creativity, ed. by R.J. Sternberg (Cambridge University Press, Cambridge, UK, 1999)Google Scholar
  9. 9.
    L. Gabora, The beer can theory of creativity, in Creative Evolutionary Systems, ed. by P. Bentley, D. Corne (Morgan Kaufmann, San Francisco, CA, 2002), pp. 147–161CrossRefGoogle Scholar
  10. 10.
    L. Gabora, Cognitive mechanisms underlying the creative process, in Proceedings of the Fourth International Conference on Creativity and Cognition, UK, 13–16 Oct. 2002, ed. by T. Hewett, T. Kavanagh, pp. 126–133Google Scholar
  11. 11.
    L. Gabora, Creative thought as a non-Darwinian evolutionary process. J. Creative Behav. 39(4), 65–87 (2005)Google Scholar
  12. 12.
    L. Gabora, Revenge of the neurds: characterizing creative thought in terms of the structure and dynamics of memory. Creat. Res. J. (in press)Google Scholar
  13. 13.
    L. Gabora, How does the creative process work? Psychol. Rev. (under revision)Google Scholar
  14. 14.
    L. Gabora, D. Aerts, Evolution as context-driven actualization of potential: toward an interdisciplinary theory of change of state. Interdiscipl. Sci. Rev. 30(1), 69–88 (2005). doi:10.1179/030801805X25873 CrossRefGoogle Scholar
  15. 15.
    J. Graf, W. Banzhaf, Interactive evolution of images, in Proceedings of 4th Annual Conference on Evolutionary Programming, San Diego, CA (MIT Press, 1995), pp. 53–65Google Scholar
  16. 16.
    J. Koza, Genetic Programming (MIT Press, London, 1993)Google Scholar
  17. 17.
    J.R. Koza, M.A. Keane, M.J. Streeter, Evolving inventions. Sci. Am. 288(2), 52–59 (2003)CrossRefGoogle Scholar
  18. 18.
    C.G. Langton, Computation at the edge of chaos. Physica D 42, 12–37 (1990). doi:10.1016/0167-2789(90)90064-V
  19. 19.
    L. Lin, R. Osan, S. Shoham, W. Jin, W. Zuo, J.Z. Tsien, Identification of network-level coding units for real-time representation of episodic experiences in the hippocampus. Proc. Natl. Acad. Sci. USA 102, 6125–6130 (2005). doi:10.1073/pnas.0408233102 CrossRefGoogle Scholar
  20. 20.
    L. Lin, R. Osan, J.Z. Tsien, Organizing principles of real-time memory encoding: neural clique assemblies and universal neural codes. Trends Neurosci. 29(1), 48–57 (2006). doi:10.1016/j.tins.2005.11.004 CrossRefGoogle Scholar
  21. 21.
    J. McCormack, Open problems in evolutionary music and art, ed. by F. Rothlauf et al., in Lecture Notes in Computer Science, vol. 3449, Proceedings of Applications of Evolutionary Computing, (EvoMUSART 2005), Lausanne, Switzerland, 30 March–1 April 2005 (Springer-Verlag, Berlin, Germany, 2005), pp. 428–436, ISSN: 0302-9743 & ISBN: 3-540-25396-3 Google Scholar
  22. 22.
    J. Miller, P. Thomson, Cartesian genetic programming, in Proceedings of the 3rd European Conference on Genetic Programming (Springer, LNCS 1802, 2000), pp. 121–132Google Scholar
  23. 23.
    H. Montes, J. Wyatt, Cartesian genetic programming for image processing tasks, in Proceedings of the International Conference of Neural Networks and Computational Intelligence, Mexico (Acta Press, 2003), pp. 185–190Google Scholar
  24. 24.
    U. Neisser, The multiplicity of thought. Br. J. Psychol. 54, 1–14 (1963)Google Scholar
  25. 25.
    J. Piaget, The Language and Thought of the Child (Routledge and Kegan Paul, London, 1926)Google Scholar
  26. 26.
    L.J. Rips, Necessity and natural categories. Psychol. Bull. 127(6), 827–852 (2001). doi:10.1037/0033-2909.127.6.827 CrossRefGoogle Scholar
  27. 27.
    S. Rooke, Eons of genetically evolved algorithmic images, in Creative Evolutionary Systems, ed. by P.J. Bentley, D. Corne (Morgan Kaufmann, Los Altos, CA, 2002)Google Scholar
  28. 28.
    H.A. Simon, Does scientific discovery have a logic? Philos. Sci. 40, 471–480 (1973). doi:10.1086/288559 CrossRefGoogle Scholar
  29. 29.
    D.K. Simonton, Origins of Genius: Darwinian Perspectives on Creativity (Oxford, New York, 1999)Google Scholar
  30. 30.
    D.K. Simonton, Creativity as blind variation and selective retention: is the creative process Darwinian? Psychol. Inq. 10, 309–328 (1999). doi:10.1207/S15327965PLI1004_4 CrossRefGoogle Scholar
  31. 31.
    D.K. Simonton, The creative imagination in Picasso’s Guernica sketches: monotonic improvements or nonmonotonic variants? Creat. Res. J. 19, 329–344 (2007)CrossRefGoogle Scholar
  32. 32.
    K. Sims, Artificial evolution for computer graphics. Comput. Graph. (ACM) 25, 319–328 (1991). doi:10.1145/127719.122752 CrossRefGoogle Scholar
  33. 33.
    S. Sloman, The empirical case for two systems of reasoning. Psychol. Bull. 9(1), 3–22 (1996). doi:10.1037/0033-2909.119.1.3 CrossRefGoogle Scholar
  34. 34.
    S. Todd, W. Latham, Evolutionary Art and Computers (Academic, New York, 1994)Google Scholar
  35. 35.
    V·K. Vassilev, J.F. Miller, The advantages of landscape neutrality in digital circuit evolution, in Proceedings of the 3rd International Conference on Evolvable Systems: From Biology to Hardware, LNCS, vol. 1801 (Springer, 2000), pp. 252–263Google Scholar
  36. 36.
    J. Walker, J. Miller, Improving the Evolvability of Digital Multipliers Using Embedded Cartesian Genetic Programming and Product Reduction. Evolvable Systems: From Biology to Hardware, 6th International Conference, ICES 2005, Proceedings (Springer, Sitges, Spain, 2005)Google Scholar
  37. 37.
    J.A. Walker, J.F. Miller, R.A. Cavill, Multi-chromosome approach to standard and embedded cartesian genetic programming, in Proceedings of the 2006 Genetic and Evolutionary Computation Conference (GECCO 2006) (ACM Press, 2006), pp. 903–910Google Scholar
  38. 38.
    R.W. Weisberg, Creativity: Beyond the Myth of Genius (Freeman, New York, 1993)Google Scholar
  39. 39.
    R.W. Weisberg, Creativity: Understanding Innovation in Problem Solving, Science, Invention, and the Arts (Wiley, Hoboken, NJ, 2006)Google Scholar
  40. 40.
    R.W. Weisberg, Expertise and reason in creative thinking: evidence from case studies and the laboratory, in Creativity and Reason in Cognitive Development, ed. by J.C. Kauffman, J. Baer (Cambridge, New York, 2006)Google Scholar
  41. 41.
    T. Yu, J. Miller, Neutrality and the Evolvability of Boolean function landscape, in Proceedings of the Fourth European Conference on Genetic Programming (Springer-Verlag, Berlin, 2001), pp. 204–217Google Scholar
  42. 42.
    T. Yu, J.F. Miller, Through the interaction of neutral and adaptive mutations evolutionary search finds a way. Artif. Life 12, 525–551 (2006). doi:10.1162/artl.2006.12.4.525 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Simon Fraser UniversitySurreyCanada
  2. 2.University of British ColumbiaKelownaCanada

Personalised recommendations