A genetic algorithm for discrete tomography reconstruction

Original Paper

Abstract

The aim of this paper is the description of an experiment carried out to verify the robustness of two different approaches for the reconstruction of convex polyominoes in discrete tomography. This is a new field of research, because it differs from classic computerized tomography, and several problems are still open. In particular, the stability problem is tackled by using both a modified version of a known algorithm and a new genetic approach. The effect of both, instrumental and quantization noises has been considered too.

Keywords

Discrete tomography Stability problem Genetic algorithm 

References

  1. 1.
    A.C. Kak, M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, New York, 1988)MATHGoogle Scholar
  2. 2.
    A. Kuba, G.T. Herman, Discrete tomography: a historical overview, in Discrete Tomography: Foundations, Algorithms and Applications, ed. by A. Kuba, G.T. Herman (Birkhauser, Boston, 1999), pp. 3–4Google Scholar
  3. 3.
    J.A. Browne, M. Koshy, CT-assisted engineering and manufacturing, in Discrete Tomography: Foundations, Algorithms and Applications, ed. by A. Kuba, G.T. Herman (Birkhauser, Boston 1999), pp. 345–361Google Scholar
  4. 4.
    H.J. Ryser, Combinatorial properties of matrices of zeros and ones. Can. J. Math. 9, 371–377 (1957)MATHMathSciNetGoogle Scholar
  5. 5.
    D. Gale, A theorem on flows in networks. Pacific J. Math. 7, 1073–1082 (1957)MATHMathSciNetGoogle Scholar
  6. 6.
    S.K. Chang, The reconstruction of binary patterns from their projections. Commun. ACM 14, 21–25 (1971)MATHCrossRefGoogle Scholar
  7. 7.
    A. Del Lungo, M. Nivat, R. Pinzani, The number of convex polyominoes reconstructible from their orthogonal projections. Discrete Math. 157, 65–78 (1996)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    I. Svalbe, D. van der Spek, Reconstruction of tomographic images using analog projections and the digital Radon transform. Linear Algebra Appl. 339, 125–145 (2001)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    A. Alpers, P. Gritzmann, L. Thorens, Stability and instability in discrete tomography, in Digital and Image Geometry. Lecture Notes in Computer Science, vol. 2243 (Springer-Verlag, 2001), pp. 175–186Google Scholar
  10. 10.
    E. Balogh, A. Kuba, C. Dévényi, A. Del Lungo, Comparison of algorithms for reconstructing hv-convex discrete sets. Linear Algebra Appl. 339, 23–35 (2001)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    E. Barcucci, A. Del Lungo, M. Nivat, R. Pinzani, X-rays characterizing some classes of discrete sets. Linear Algebra Appl. 339, 3–21 (2001)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    E. Barcucci, A. Del Lungo, M. Nivat, R. Pinzani, Medians of polyominoes: a property for the reconstruction. Int. J. Imaging Syst. Technol. 9, 69–77 (1998)CrossRefGoogle Scholar
  13. 13.
    S. Brunetti, A. Del Lungo, F. Del Ristoro, A. Kuba, M. Nivat, Reconstruction of 8- and 4-connected convex discrete sets from row and column projections. Linear Algebra Appl. 339, 37–57 (2001)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    A. Del Lungo, M. Nivat, Reconstruction of connected sets from two projections, in Discrete Tomography: Foundations, Algorithms and Applications, ed. by A. Kuba, G.T. Herman (Birkhauser, 1999), pp. 163–188Google Scholar
  15. 15.
    M. Chrobak, C. Dürr, Reconstructing hv-convex polyominoes from orthogonal projections. Inform. Process. Lett. 69, 283–289 (1999)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    A. Kuba, Reconstruction in Different Classes of 2D Discrete Sets. Lecture Notes in Computer Science, vol. 1568 (1999), pp. 153–163Google Scholar
  17. 17.
    V. Di Gesù, C. Valenti, The stability problem and noisy projections in discrete tomography. J. Vis. Lang. Comput. 15(5), 361–371 (2004)CrossRefGoogle Scholar
  18. 18.
    R.J. Gardner, P. Gritzmann, Discrete tomography: determination of finite sets by X-rays. Trans. Amer. Math. Soc. 349, 2271–2295 (1997)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    M. Venere, H. Liao, A. Clausse, A genetic algorithm for adaptive tomography of elliptical objects. IEEE Signal Process. Lett. 7(7), 176–178 (2000)CrossRefGoogle Scholar
  20. 20.
    K.D. Kihm, D.P. Lyons, Optical tomography using a genetic algorithm. Opt. Lett. 21(17), 1327–1329 (1996)CrossRefGoogle Scholar
  21. 21.
    K.D. Kihm, D.P. Lyons, Tomographic-image reconstruction using a hybrid genetic algorithm. Opt. Lett. 22(12), 847–849 (1997)Google Scholar
  22. 22.
    K.J. Batenburg, An evolutionary algorithm for discrete tomography. Discrete Appl. Math. 151, 36–54 (2005)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    D.T. Pham, D. Karaboga, Intelligent Optimisation Techniques (Springer, 2000)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Dipartimento di Matematica e ApplicazioniUniversità di PalermoPalermoItaly

Personalised recommendations