Genetic Programming and Evolvable Machines

, Volume 8, Issue 4, pp 381–393 | Cite as

Using evolvable genetic cellular automata to model breast cancer

Original Paper

Abstract

Cancer is an evolutionary process. Mutated cells undergo selection for abnormal growth and survival creating a tumor. We model this process with cellular automata that use a simplified genetic regulatory network simulation to control cell behavior and predict cancer etiology. Our genetic model gives us the ability to relate genetic mutation to cancerous outcomes. The simulation uses known histological morphology, cell types, and stochastic behavior to specifically model ductal carcinoma in situ (DCIS), a common form of non-invasive breast cancer. Using this model we examine the effects of hereditary predisposition on DCIS incidence and aggressiveness. Results show that we are able to reproduce in vivo pathological features to hereditary forms of breast cancer: earlier incidence and increased aggressiveness. We also show that a contributing factor to the different pathology of hereditary breast cancer results from the ability of progenitor cells to pass cancerous mutations on to offspring.

Keywords

Genetic cellular automata DCIS Progenitor hierarchy Ductal simulation Hereditary genetic predisposition Hereditary breast cancer 

References

  1. 1.
    Alarcon, T., Byrne, H.M., Maini, P.K.: A cellular automaton model for tumour growth in inhomogeneous environment. J. Theor. Biol. 225, 257–274 (2003)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Bankhead, A. III, Magnuson, N.S., Heckendorn, R.B.: Modeling multicellular and tumorous existence with genetic cellular automata. In: Pollack, J., Bedau, M.A., Husbands, P., Ikegami, T., Watson, R.A. (eds.) Artificial Life IX, pp. 220–225. MIT Press (2004)Google Scholar
  3. 3.
    Bankhead, A. III, Magnuson, N.S., Heckendorn, R.B.: Cellular automaton simulation examining progenitor hierarchy structure effects on mammary ductal carcinoma. J. Theor. Biol. 246(3), 491–498 (2007)CrossRefGoogle Scholar
  4. 4.
    Beckmann, M.W., Niederacher, D., Schnurch, H.-G., Gusterson, B.A, Bender, H.G.: Multistep carcinogenesis of breast cancer and tumour heterogeneity. J. Mol.Med. 75, 429–439 (1997)CrossRefGoogle Scholar
  5. 5.
    Birnbaum, D., Bertucci, F., Ginestier, C., Tagett, R., Jacquemier, J., Charafe-Jauffret, E.: Basal and luminal breast cancers: basic or luminous. Int. J. Oncol. 25, 249–258 (2004)Google Scholar
  6. 6.
    Byrne, H.M., Chaplain, M.A.J.: Growth of nonnecrotic tumours in the presence and absence of inhibitors. Math. Biosci. 14, 151–181 (1995)CrossRefGoogle Scholar
  7. 7.
    Cao, Y., Paner, G.P., Kahn, L.B., Rajan, P.B.: Noninvasive carcinoma of the breast. Arch. Pathol. Lab. Med. 128, 893–896 (2004)Google Scholar
  8. 8.
    Coppock, H.A., Clarke, R.B.: Mammary stem cells: the root of breast cancer? Breast Cancer Online 7(9), 4 pp (2004)Google Scholar
  9. 9.
    van Diest, P.J., Baak, J.P.A., van der Wall, E.: Prognostic value of proliferation in invasive breast cancer: a review. J. Clin. Pathol. 57(7):675–681 (2004)CrossRefGoogle Scholar
  10. 10.
    Eerola, H., Keikkila, P., Tamminen, A., Aittomaki, K., Blomqvist, C., Nevanlinna, H.: Histopathological features of breast tumours in brca1, brca2 and mutation-negative breast cancer families. Breast Cancer Res. 7, R93–R100 (2005)CrossRefGoogle Scholar
  11. 11.
    Erbas, B., Provenzano, E., Armes, J., Gertig, D.: The natural history of ductal carcinoma in situ of the breast: a review. Breast Cancer Res. Treat. 97, 135–144 (2006)CrossRefGoogle Scholar
  12. 12.
    Evan, G.I., Vousden, K.H.: Proliferation, cell cycle and apoptosis in cancer. Nature 411, 342–348 (2001)CrossRefGoogle Scholar
  13. 13.
    Fairbanks, D.J., Andersen, R.W.: Genetics: The Continuity of Life. Brooks/Cole Publishing Company (1999)Google Scholar
  14. 14.
    Frank, S.A., Nowak, M.A.: Problems of somatic mutation and cancer. BioEssays: Adv. Mol. Cell. Devel. Biol. 26, 291–299 (2004)Google Scholar
  15. 15.
    Franks, S.J., Byrne, H.M., Lewis, C.E., Underwood, J.C.E.: Biological inferences from a mathematical model of comedo ductal carcinoma in situ of the breast. J. Theor. Biol. 232, 523–543 (2005)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Gwen, D.C.: Nonlactating mammary gland. online http://microanatomy.net/ 1998. with permission of author.
  17. 17.
    Kansal, A.R., Torquoato, S., Harsh, G.R. IV, Chiocca, E.A., Deisboeck, T.S.: Simulated brain tumor growth dynamics using a three-dimensional cellular automaton. J. Theor. Biol. 203, 367–382 (2000)CrossRefGoogle Scholar
  18. 18.
    Knudson, A.G. Jr.: Mutation and cancer: statistical study of retinoblastoma. Proc. Natl. Acad. Sci. 68, 820–823 (1971)CrossRefGoogle Scholar
  19. 19.
    Leonard, G.D., Swain, S.M.: Ductal carcinoma in situ, complexities and challenges. J. Natl. Cancer Inst. 96(12), 906–920 (2004)CrossRefGoogle Scholar
  20. 20.
    Louwman, W.J., van Beek, M.W.P.M., Schapers, R.F.M., Tutein Nolthenius-Puylaert, M.B.C.J.E, van Diest, P.J., Roumen, R.M., Coebergh, J.W.W. (2006) Long-term survival of t1 and t2 lymph node-negative breast cancer patients according to mitotic activity index: a population-based study. Int. J. Cancer 118, 2310–2314.CrossRefGoogle Scholar
  21. 21.
    Lux, M.P., Fasching, P.A., Beckmann, M.W.: Hereditary breast and ovarian cancer: review and future perspectives. J. Mol. Med. 84, 16–24 (2006)CrossRefGoogle Scholar
  22. 22.
    Lynch, B.J., Holden, J.A., Buys, S.S., Neuhausen, S.L., Gaffney, D.K.: Pathobiologic characteristics of hereditary breast cancer. Hereditary Breast Cancer 29(10):1140–1144 (1998)Google Scholar
  23. 23.
    Maley, C.C., Forrest, S.: Exploring the relationship between neutral and selective mutations in cancer. Artif. Life 6, 325–345 (2000)CrossRefGoogle Scholar
  24. 24.
    Man, Y.-G., Tai, L., Barner, R., Vang, R., Saenger, J.S., Shekitka, K.M., Bratthauer, G.L., Wheeler, D.T., Liang, C.Y., Vinh, T.N., Strauss, B.L.: Cell clusters overlying focally disrupted mammary myoepethelial cell layers and adjacent cells within the same duct display different immunohistochemical and genetic features: implications for tumor progression and invasion. Breast Cancer Res. 5, 231–241 (2003)CrossRefGoogle Scholar
  25. 25.
    Marcus, J.N., Watson, P., Page, D.L., Narod, S.A., Lenoir, G.M., Tonin, P., Linder-Stephenson, L., Salerno, G., Conway, T.A., Lynch, H.T.: Hereditary breast cancer—pathobiology, prognosis, and brca1 and brca2 gene linkage. cancer 77(4):697–709 (1996)CrossRefGoogle Scholar
  26. 26.
    Misell, L.M., Hwang, E.S., Au, A., Esserman, L., Hellerstein, M.K.: Development of a novel method for measuring in vivo breast epithelial cell proliferation in humans. Breast Cancer Res. Treat. 89, 257–264 (2005)CrossRefGoogle Scholar
  27. 27.
    Moreira, J., Deutsch, A.: Cellular automaton models of tumor development: a critical review. Adv. Complex Syst. 5, 247–267 (2002)MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Oborny, B., Czaran, T., Kun, A.: Exploration and exploitation of resource patches by clonal growth: a spatial model on the effects of transport between modules. Ecol. Modell. 141, 151–169 (2001)CrossRefGoogle Scholar
  29. 29.
    Reya, T., Morrison, S.J., Clarke, M.F., Weissman, I.L.: Stem cells, cancer, and cancer stem cells. Nature 414, 105–111 (2001)CrossRefGoogle Scholar
  30. 30.
    Rice, A.R., Hamilton, M.A., Camper, A.K.: Movement, replication, and emigration rates of individual bacteria in biofilm. Microb. Ecol. 45, 163–172 (2003)CrossRefGoogle Scholar
  31. 31.
    Schmitz, J.E., Kansal, A.R., Torquato, S.: A cellular automaton model of brain tumor treatment and resistance. J. Theor. Med. 4, 223–239 (2002)MATHCrossRefGoogle Scholar
  32. 32.
    Smalley, M., Ashworth, A.: Stem cells and breast cancer: a field in transit. Nature 3, 832–844 (2003)Google Scholar
  33. 33.
    Stingl, J., Raouf, A., Emerman, J.T., Eaves, C.J.: Epithelial progenitors in the normal human mammary gland. J. Mammary Gland Biol. Neoplasia 10(1), 49–59 (2005)Google Scholar
  34. 34.
    Xu, Y.: A free boundary problem of ductal carcinoma in situ. Disc. Continuous Dynamic. Syst. B 4(1):337–348 (2004)MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Bioinformatics and Computational BiologyUniversity of IdahoMoscowUSA

Personalised recommendations