Genetic Programming and Evolvable Machines

, Volume 8, Issue 4, pp 413–432 | Cite as

Genetic programming for computational pharmacokinetics in drug discovery and development

  • Francesco Archetti
  • Stefano Lanzeni
  • Enza Messina
  • Leonardo Vanneschi
Original Paper

Abstract

The success of a drug treatment is strongly correlated with the ability of a molecule to reach its target in the patient’s organism without inducing toxic effects. Moreover the reduction of cost and time associated with drug discovery and development is becoming a crucial requirement for pharmaceutical industry. Therefore computational methods allowing reliable predictions of newly synthesized compounds properties are of outmost relevance. In this paper we discuss the role of genetic programming in predictive pharmacokinetics, considering the estimation of adsorption, distribution, metabolism, excretion and toxicity processes (ADMET) that a drug undergoes into the patient’s organism. We compare genetic programming with other well known machine learning techniques according to their ability to predict oral bioavailability (%F), median oral lethal dose (LD50) and plasma-protein binding levels (%PPB). Since these parameters respectively characterize the percentage of initial drug dose that effectively reaches the systemic blood circulation, the harmful effects and the distribution into the organism of a drug, they are essential for the selection of potentially good molecules. Our results suggest that genetic programming is a valuable technique for predicting pharmacokinetics parameters, both from the point of view of the accuracy and of the generalization ability.

Keywords

Computational pharmacokinetics Drug discovery Genetic programming 

References

  1. 1.
    Kennedy, T.: Managing the drug discovery/development interface. Drug Discov. Today 2, 436–444 (1997)CrossRefGoogle Scholar
  2. 2.
    Kola, I., Landis, J.: Can the pharmaceutical industry reduce attrition rates? Nat. Rev. Drug Discov. 3, 711–716 (2004)CrossRefGoogle Scholar
  3. 3.
    Eddershaw, J.P., Beresford, A.P., Bayliss, M.K.: ADME/PK as part of a rational approach to drug discovery. Drug Discov. Today 9, 409–414 (2000)CrossRefGoogle Scholar
  4. 4.
    van de Waterbeemd, H., Gifford, E.: ADMET in silico modeling: towards prediction paradise? Nat. Rev. Drug Discov. 2, 192–204 (2003)CrossRefGoogle Scholar
  5. 5.
    Norinder, U., Bergstrom, C.A.S.: Prediction of ADMET properties. ChemMedChem 1, 920–937 (2006)CrossRefGoogle Scholar
  6. 6.
    Tuffs, A.: Bayer faces shake up after Lipobay withdrawn. Br. Med. J. 323(7317), 828 (2001)CrossRefGoogle Scholar
  7. 7.
    Koza, J.R.: Genetic Programming. The MIT Press, Cambridge, MA (1992)MATHGoogle Scholar
  8. 8.
    Berezhkovskiy, L.M.: Determination of drug binding to plasma proteins using competitive equilibrium binding to dextran-coated charcoal. J. Pharmacokinet. Pharmacodyn. 33(5), 920–937 (2006)CrossRefGoogle Scholar
  9. 9.
    van de Waterbeemd, H., Rose, S.: In: Wermuth, L.G. (ed.) The Practice of Medicinal Chemistry, 2nd ed., pp. 1367–1385. Academic Press (2003)Google Scholar
  10. 10.
    Todeschini, R., Consonni, V.: Handbook of Molecular Descriptors. Wiley–VCH, Weinheim (2000)Google Scholar
  11. 11.
    David, S., Wishart, Knox, C., Guo, A.C., Shrivastava, S., Hassanali, M., Stothard, P., Chang, Z., Woolsey, J.: DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucl. Acids Res. 34:doi:10.1093/nar/gkj067 (2006)
  12. 12.
    Yoshida, F., Topliss, J.G.: QSAR model for drug human oral bioavailability. J. Med. Chem. 43, 2575–2585 (2000)CrossRefGoogle Scholar
  13. 13.
    Pintore, M., van de Waterbeemd, H., Piclin, N., ChrTtien, J.R.: Prediction of oral bioavailability by adaptive fuzzy partitioning. Eur. J. Med. Chem. 38(4), 427–31 (2003)CrossRefGoogle Scholar
  14. 14.
    Frohlich, Wegner, J., Sieker, F., Zell, A.: Kernel functions for attributed molecular graphs—a new similarity based approach to ADME prediction in classification and regression. QSAR and Combinatorial Sci. 38(4), 427–431 (2003)Google Scholar
  15. 15.
    Andrews, C.W., Bennett, L., Yu, L.X.: Predicting human oral bioavailability of a compound: development of a novel quantitative structure–bioavailability relationship. Pharmacol. Res. 17, 639–644 (2000)CrossRefGoogle Scholar
  16. 16.
    Feng, J., Lurati, L., Ouyang, H., Robinson, T., Wang, Y., Yuan, S., Young, S.S.: Predictive toxicology: benchmarking molecular descriptors and statistical methods. J. Chem. Inform. Comput. Sci. 43, 1463–1470 (2003)CrossRefGoogle Scholar
  17. 17.
    Martin, T.M., Young, D.M.: Prediction of the acute toxicity (96-h LC50) of organic compounds to the fathead minnow (Pimephales promelas) using a group contribution method. Chem. Res. Toxicol. 14(10), 1378–1385 (2001)CrossRefGoogle Scholar
  18. 18.
    van de Waterbeemd, H., Smith, D.A, Jones, B.C.: Lipophilicity in PK design:methyl, ethyl, futile. J. Comput. Aided Mol. Design 15, 273–286 (2001)CrossRefGoogle Scholar
  19. 19.
    Colmenarejo, G., Alvarez-Pedraglio, A., Lavandera, J.L.: Chemoinformatic models to predict binding affinities to human serum albumin. J. Med. Chem. 44, 4370–4378 (2001)CrossRefGoogle Scholar
  20. 20.
    Kratochwil, N.A., Huber, W., Muller, F., Kansy, F., Gerber, P.: Predicting plasma protein binding of drugs: a new approach. Biochem. Pharmacol. 64,1355–1374 (2002)CrossRefGoogle Scholar
  21. 21.
    Zupan, J., Gasteiger, P.: Neural Networks in Chemistry and Drug Design: An Introduction, 2nd ed. Wiley (1999)Google Scholar
  22. 22.
    Greene, N.: Computer systems for the prediction of toxicity: an update. Adv. Drug Deliv. Rev. 54, 417–431 (2002)CrossRefGoogle Scholar
  23. 23.
    Accelrys Inc.: The world leader in cheminformatics for drug development (2006). See www.accelrys.comGoogle Scholar
  24. 24.
    Pharma Algorithms Inc.: A company active in the field of ADMET predictions (2006). See www.ap-algorithms.comGoogle Scholar
  25. 25.
    Simulation Plus Inc.: A company that use both statistical methods and differential equations based simulations for ADME parameter estimation (2006). See www.simulationsplus.comGoogle Scholar
  26. 26.
    Langdon, W.B., Barrett, S.J.: Genetic Programming in data mining for drug discovery. Evolutionary Computing in Data Mining, 211–235 (2004)Google Scholar
  27. 27.
    Archetti, F., Lanzeni, S., Messina, E., Vanneschi, L.: Genetic programming for human oral bioavailability of drugs. In: Cattolico, M. (ed.) Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, pp. 255–262. Seattle, Washington, USA (2006)Google Scholar
  28. 28.
    Tetko, I.V., Gasteiger, J., Todeschini, R., Mauri, A., Livingstone, D., Ertl, P., Palyulin, V.A., Radchenko, E.V., Zefirov, N.S., Makarenko, A.S., Tanchuk, V.Y., Prokopenko, V.V.: Virtual computational chemistry laboratory—design and description. J. Comput. Aided Mol. Design 19, 453–463 (2005). See www.vcclab.orgGoogle Scholar
  29. 29.
    Keijzer, M.: Improving symbolic regression with interval arithmetic and linear scaling. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E., Poli, R., Costa, E. (eds.) Genetic Programming, Proceedings of the 6th European Conference, EuroGP 2003, vol. 2610 of LNCS, pp. 71–83. Essex. Springer, Berlin, Heidelberg, New York (2003)Google Scholar
  30. 30.
    Hall, M.A.: Correlation-based feature selection for machine learning. Ph.D. thesis, Waikato University, Department of Computer Science, Hamilton, NZ (1998)Google Scholar
  31. 31.
    Jolliffe, I.T.: Principal Component Analysis, 2nd ed. Springer series in statistics (1999)Google Scholar
  32. 32.
    Weka: A multi-task machine learning software developed by Waikato University (2006). See www.cs.waikato.ac.nz/ml/weka/Google Scholar
  33. 33.
    Akaike, H.: Information theory and an extension of maximum likelihood principle. Proceedings of the 2nd International Symposium on Information Theory, Akademia Kiado (1973)Google Scholar
  34. 34.
    Rousseeuw, P.J., Leroy, A.M.: Robust Regression and Outlier Detection. Wiley, New York (1987)MATHGoogle Scholar
  35. 35.
    Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice Hall, London (1999)MATHGoogle Scholar
  36. 36.
    Smola Alex, J., Scholkopf, B.: A Tutorial on Support Vector Regression. Technical Report Technical Report Series— NC2-TR-1998-030, NeuroCOLT2, (1999)Google Scholar
  37. 37.
    REACH. Registration, Evaluation and Authorisation of Chemicals, 2006. http://ec.europa.eu/environment/chemicals/reach/reach_intro.htm
  38. 38.
    Vanneschi, L., Clergue, M., Collard, P., Tomassini, M., Vérel, S.: Fitness clouds and problem hardness in genetic programming. In: Deb, K., et al. (ed.) Proceedings of the Genetic and Evolutionary Computation Conference, GECCO’04, vol. 3103 of Lecture Notes in Computer Science, pp. 690–701. Springer, Berlin, Heidelberg, New York (2004)Google Scholar
  39. 39.
    Vanneschi, L., Tomassini, M., Collard, P., Vérel, S.: Negative slope coefficient. a measure to characterize genetic programming fitness landscapes. In: Collet, P., et al. (ed.) Genetic Programming, 9th European Conference, EuroGP2006, Lecture Notes in Computer Science, LNCS 3905, pp. 178–189. Springer, Berlin, Heidelberg, New York (2006)Google Scholar
  40. 40.
    Vanneschi, L.: Investigating problem hardness of real life applications. In: Riolo, R., et al. (eds.) Genetic Programming Theory and Practice. To appear (2007)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Francesco Archetti
    • 1
    • 2
  • Stefano Lanzeni
    • 1
  • Enza Messina
    • 1
  • Leonardo Vanneschi
    • 1
  1. 1.D.I.S.Co., Department of Informatics, Systems and CommunicationUniversity of Milano-BicoccaMilanItaly
  2. 2.Consorzio Milano RicercheMilanItaly

Personalised recommendations