Genetic Programming and Evolvable Machines

, Volume 8, Issue 2, pp 131–162 | Cite as

Compositional pattern producing networks: A novel abstraction of development

Original Paper

Abstract

Natural DNA can encode complexity on an enormous scale. Researchers are attempting to achieve the same representational efficiency in computers by implementing developmental encodings, i.e. encodings that map the genotype to the phenotype through a process of growth from a small starting point to a mature form. A major challenge in in this effort is to find the right level of abstraction of biological development to capture its essential properties without introducing unnecessary inefficiencies. In this paper, a novel abstraction of natural development, called Compositional Pattern Producing Networks (CPPNs), is proposed. Unlike currently accepted abstractions such as iterative rewrite systems and cellular growth simulations, CPPNs map to the phenotype without local interaction, that is, each individual component of the phenotype is determined independently of every other component. Results produced with CPPNs through interactive evolution of two-dimensional images show that such an encoding can nevertheless produce structural motifs often attributed to more conventional developmental abstractions, suggesting that local interaction may not be essential to the desirable properties of natural encoding in the way that is usually assumed.

Keywords

Evolutionary computation Representation Developmental encoding Indirect encoding Artificial embryogeny Generative systems Complexity 

References

  1. 1.
    Dellaert, F.: Toward a biologically defensible model of development. Master’s thesis, Case Western Reserve University, Clevekand, OH (1995)Google Scholar
  2. 2.
    Kandel, E.R., Schwartz, J.H., Jessell, T.M. (eds.) Principles of Neural Science. Elsevier, Amsterdam, 3rd edn (1991)Google Scholar
  3. 3.
    Zigmond, M.J., Bloom, F.E., Landis, S.C., Roberts, J.L., Squire, L.R. (eds.) Fundamental Neuroscience. Academic Press, London (1999)Google Scholar
  4. 4.
    Deloukas, P., Schuler, G.D., Gyapay, G., Beasley, E.M., et al.: A physical map of 30,000 human genes. Science 282, 744–746 (1998)CrossRefGoogle Scholar
  5. 5.
    Angeline, P.J.: Morphogenic evolutionary computations: Introduction, issues and examples. In: McDonnell, J.R., Reynolds, R.G., Fogel, D.B. (eds.) Evolutionary Programming IV: The Fourth Annual Conference on Evolutionary Programming, pp. 387–401. MIT Press, Cambridge (1995)Google Scholar
  6. 6.
    Bentley, P.J., Kumar, S.: The ways to grow designs: A comparison of embryogenies for an evolutionary design problem. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-1999), pp. 35–43. Kaufmann, San Francisco (1999)Google Scholar
  7. 7.
    Hornby, G.S., Pollack, J.B.: Creating high-level components with a generative representation for body-brain evolution. Artif. Life 8, 223–246 (2002)CrossRefGoogle Scholar
  8. 8.
    Stanley, K.O., Miikkulainen, R.: A taxonomy for artificial embryogeny. Artif. Life 9, 93–130 (2003)CrossRefGoogle Scholar
  9. 9.
    Stanley, K.O., Bryant, B.D., Miikkulainen, R.: Real-time neuroevolution in the NERO video game. IEEE T. Evolut. Comput. Special Issue Evolut. Comput. Games 9, 653–668 (2005)Google Scholar
  10. 10.
    Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting topologies. Evolutionary Comput. 10, 99–127 (2002)CrossRefGoogle Scholar
  11. 11.
    Stanley, K.O., Miikkulainen, R.: Competitive coevolution through evolutionary complexification. J. Artif. Intell. Res. 21, 63–100 (2004)Google Scholar
  12. 12.
    Astor, J.S., Adami, C.: A developmental model for the evolution of artificial neural networks. Artif. Life 6, 189–218 (2000)CrossRefGoogle Scholar
  13. 13.
    Boers, E.J.W., Kuiper, H.: Biological metaphors and the design of modular artificial neural networks. Master’s thesis, Departments of Computer Science and Experimental and Theoretical Psychology at Leiden University, The Netherlands (1992)Google Scholar
  14. 14.
    Bongard, J.C.: Evolving modular genetic regulatory networks. In: Proceedings of the 2002 Congress on Evolutionary Computation (2002)Google Scholar
  15. 15.
    Bongard, J.C., Pfeifer, R.: Repeated structure and dissociation of genotypic and phenotypic complexity in artificial ontogeny. In: Spector, L. et al. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference. Kaufmann, San Francisco, pp. 829–836 (2001)Google Scholar
  16. 16.
    Dellaert, F., Beer, R.D.: A developmental model for the evolution of complete autonomous agents. In: Maes, P., Mataric, M.J., Meyer, J.-A., Pollack, J., Wilson, S.W. (eds.) From Animals to Animats 4: Proceedings of the Fourth International Conference on Simulation of Adaptive Behavior. MIT Press, Cambridge, MA (1996)Google Scholar
  17. 17.
    Eggenberger, P.: Evolving morphologies of simulated 3D organisms based on differential gene expression. In: Husbands, P., Harvey, I. (eds.) Proceedings of the Fourth European Conference on Artificial Life, pp. 205–213. MIT Press, Cambridge, MA (1997)Google Scholar
  18. 18.
    Federici, D.: Evolving a neurocontroller through a process of embryogeny. In: Schaal, S., Ijspeert, A.J., Billard, A., Vijayakumar, S., Hallam, J., Jean-Arcady (eds.) Proceedings of the Eighth International Conference on Simulation and Adaptive Behavior (SAB-2004), pp. 373–384. MIT Press, Cambridge, MA (2004a)Google Scholar
  19. 19.
    Federici, D.: Using embryonic stages to increase the evolvability of development. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2004) Workshop Program. Springer-Verlag, Berlin (2004b)Google Scholar
  20. 20.
    Fleischer, K., Barr, A.H.: A simulation testbed for the study of multicellular development: The multiple mechanisms of morphogenesis. In: Langton, C.G. (ed.) Artificial Life III, pp. 389–416. Addison-Wesley, Reading (1993)Google Scholar
  21. 21.
    Gruau, F., Whitley, D., Pyeatt, L.: A comparison between cellular encoding and direct encoding for genetic neural networks. In: Koza, J.R., Goldberg, D.E., Fogel, D.B., Riolo, R.L., (eds.) Genetic Programming 1996: Proceedings of the First Annual Conference, pp. 81–89. Cambridge, MA: MIT Press (1996)Google Scholar
  22. 22.
    Hornby, G.S., Pollack, J.B.: The advantages of generative grammatical encodings for physical design. In: Proceedings of the 2002 Congress on Evolutionary Computation (2001a)Google Scholar
  23. 23.
    Hornby, G.S., Pollack, J.B.: Body-brain co-evolution using L-systems as a generative encoding. In: Spector, L. et al. (ed.) Proceedings of the Genetic and Evolutionary Computation Conference. Kaufmann, San Francisco (2001b)Google Scholar
  24. 24.
    Jakobi, N.: Harnessing morphogenesis. In: Proceedings of Information Processing in Cells and Tissues, pp. 29–41. University of Liverpool (1995)Google Scholar
  25. 25.
    Kaneko, K., Furusawa, C.: Emergence of multicellular organisms with dynamic differentiation and spatial pattern. Artif. Life 4, 79–93 (1998)CrossRefGoogle Scholar
  26. 26.
    Kauffman, S.A.: The Origins of Order. Oxford University Press, New York (1993)Google Scholar
  27. 27.
    Kitano, H.: Designing neural networks using genetic algorithms with graph generation system. Complex Syst. 4, 461–476 (1990)MATHGoogle Scholar
  28. 28.
    Komosinski, M., Rotaru-Varga, A.: Comparison of different genotype encodings for simulated 3D agents. Artif. Life 7, 395–418 (2001)CrossRefGoogle Scholar
  29. 29.
    Lindenmayer, A.: Mathematical models for cellular interaction in development parts I and II. J. Theor. Biol. 18, 280–299; 300–315 (1968)CrossRefGoogle Scholar
  30. 30.
    Lindenmayer, A.: Adding continuous components to L-systems. In: Rozenberg, G., Salomaa, A. (eds.) L Systems, Lecture Notes in Computer Science 15, pp. 53–68. Springer-Verlag, Heidelberg, Germany (1974)Google Scholar
  31. 31.
    Miller, J.F.: Evolving a self-repairing, self-regulating, French flag organism. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2004). Springer Verlag, Berlin (2004)Google Scholar
  32. 32.
    Mjolsness, E., Sharp, D.H., Reinitz, J.: A connectionist model of development. J. Theor. Biol. 152, 429–453 (1991)CrossRefGoogle Scholar
  33. 33.
    Nolfi, S., Parisi, D.: Growing neural networks. Technical Report PCIA-91- 15. Institute of Psychology, C.N.R., Rome (1991)Google Scholar
  34. 34.
    Prusinkiewicz, P., Lindenmayer, A.: The Algorithmic Beauty of Plants. Springer-Verlag, Heidelberg, Germany (1990)MATHGoogle Scholar
  35. 35.
    Schnier, T.: Evolved representations and their use in computational creativity. PhD thesis, University of Sydney Department of Architectural and Design Science, Australia (1998)Google Scholar
  36. 36.
    Sims, K.: Evolving 3D morphology and behavior by competition. In: Brooks, R.A., Maes, P. (eds.) Proceedings of the Fourth International Workshop on the Synthesis and Simulation of Living Systems (Artificial Life IV), pp. 28–39. MIT Press, Cambridge, MA (1994)Google Scholar
  37. 37.
    Turing, A.: The chemical basis of morphogenesis. Phil. T. Roy. Soc. B 237, 37–72 (1952)Google Scholar
  38. 38.
    Gilbert, C.D., Wiesel, T.N.: Receptive field dynamics in adult primary visual cortex. Nature 356, 150–152 (1992)CrossRefGoogle Scholar
  39. 39.
    Hubel, D.H., Wiesel, T.N.: Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat. J. Neurophysiol. 28, 229–289 (1965)Google Scholar
  40. 40.
    Behravan, R., Bentley, P.J.: Exploring reaction-diffusion and pattern formation. In: Proceedings of the First Australian Conference on Artificial Life (ACAL 2003) (2003)Google Scholar
  41. 41.
    Cangelosi, A., Parisi, D., Nolfi, S.: Cell division and migration in a genotype for neural networks. Technical Report PCIA-93, Institute of Psychology, C.N.R. Rome (1993)Google Scholar
  42. 42.
    Belew, R.K., Kammeyer, T.E.: In: Forrest, S. (ed.) Proceedings of the Fifth International Conference on Genetic Algorithms. Kaufmann, San Francisco (1993)Google Scholar
  43. 43.
    Stanley, K.O., Reisinger, J., Miikkulainen, R.: Exploiting morphological conventions for genetic reuse. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2004) Workshop Program. Springer Verlag, Berlin (2004)Google Scholar
  44. 44.
    Raff, R.A.: The Shape of Life: Genes, Development, and the Evolution of Animal Form. Chicago, The University of Chicago Press (1996)Google Scholar
  45. 45.
    Amores, A., Force, A., Yan, Y.-L., Joly, L., Amemiya, C., Fritz, A., Ho, R.K., Langeland, J., Prince, V., Wang, Y.-L., Westerfield, M., Ekker, M., Postlethwait, J.H.: Zebrafish HOX clusters and vertebrate genome evolution. Science 282, 1711–1784 (1998)CrossRefGoogle Scholar
  46. 46.
    Darnell, J.E., Doolittle, W.F.: Speculations on the early course of evolution. Proc. Natl. Acad. Sci. USA 83, 1271–1275 (1986)CrossRefGoogle Scholar
  47. 47.
    Force, A., Lynch, M., Pickett, F.B., Amores, A., Lin Yan, Y., Postlethwait, J.: Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151, 1531–1545 (1999)Google Scholar
  48. 48.
    Martin, A.P.: Increasing genomic complexity by gene duplication and the origin of vertebrates. Am. Nat. 154, 111–128 (1999)CrossRefGoogle Scholar
  49. 49.
    Watson, J.D., Hopkins, N.H., Roberts, J.W., Steitz, J.A., Weiner, A.M.: Molecular Biology of the Gene, 4th edn. The Benjamin Cummings Publishing Company, Inc, Menlo Park, CA (1987)Google Scholar
  50. 50.
    Altenberg, L.: Evolving better representations through selective genome growth. In: Proceedings of the IEEE World Congress on Computational Intelligence, pp. 182–187. IEEE Press, Piscataway, NJ (1994)Google Scholar
  51. 51.
    Carroll, S.B.: Homeotic genes and the evolution of arthropods and chordates. Nature 376, 479–485 (1995)CrossRefGoogle Scholar
  52. 52.
    Cybenko, G.: Approximation by superpositions of a sigmoidal function. Math. Control Signals Syst. 2, 303–314 (1989)MATHCrossRefMathSciNetGoogle Scholar
  53. 53.
    Meinhardt, H.: Models of Biological Pattern Formation. Academic Press, London (1982)Google Scholar
  54. 54.
    Curtis, D., Apfeld, J., Lehmann, R.: Nanos is an evolutionarily conserved organizer of anterior-posterior polarity. Development 121, 1899–1910 (1995)Google Scholar
  55. 55.
    Lall, S., Patel, N.: Conservation and divergence in molecular mechanisms of axis formation. Annu. Rev. Genet. 35, 407–447 (2001)CrossRefGoogle Scholar
  56. 56.
    Angeline, P.J., Saunders, G.M., Pollack, J.B.: An evolutionary algorithm that constructs recurrent neural networks. IEEE Trans. Neural Networks 5, 54–65 (1993)CrossRefGoogle Scholar
  57. 57.
    Opitz, D.W., Shavlik, J.W.: Connectionist theory refinement: Genetically searching the space of network topologies. J. Artif. Intell. Res. 6, 177–209 (1997)MATHGoogle Scholar
  58. 58.
    Pujol, J.C.F., Poli, R.: Evolution of the topology and the weights of neural networks using genetic programming with a dual representation. Technical Report CSRP-97-7, School of Computer Science, The University of Birmingham, Birmingham B15 2TT, UK (1997)Google Scholar
  59. 59.
    Yao, X., Liu, Y.: Towards designing artificial neural networks by evolution. Appl. Math. Comput. 91, 83–90 (1996)CrossRefGoogle Scholar
  60. 60.
    Zhang, B.-T., Muhlenbein, H.: Evolving optimal neural networks using genetic algorithms with Occam’s razor. Complex Syst. 7, 199–220 (1993)Google Scholar
  61. 61.
    Miller, J.F.P.T.: Cartesian genetic programming. In: Proceedings of the Third European Conference on Genetic Programming Published as Lecture Notes in Computer Science, vol. 1802, pp. 121–132 (2000)Google Scholar
  62. 62.
    Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Slection. MIT Press, Cambridge, MA (1992)Google Scholar
  63. 63.
    Gomez, F., Miikkulainen, R.: Solving non-Markovian control tasks with neuroevolution. In: Proceedings of the 16th International Joint Conference on Artificial Intelligence, pp. 1356–1361. Kaufmann, San Francisco (1999)Google Scholar
  64. 64.
    Saravanan, N., Fogel, D.B.: Evolving neural control systems. IEEE Expert 10, 23–27 (1995)CrossRefGoogle Scholar
  65. 65.
    Yao, X.: Evolving artificial neural networks. Proc. IEEE 87, 1423–1447 (1999)CrossRefGoogle Scholar
  66. 66.
    Radcliffe, N.J.L: Genetic set recombination and its application to neural network topology optimization. Neural Comput. Appl. 1, 67–90 (1993)MATHCrossRefGoogle Scholar
  67. 67.
    Roggen, D., Federici, D.: Multi-cellular development: Is there scalability and robustness to gain. In: Proceedings of the 8th International Conference on Parallel Problem Solving from Nature (PPSN VIII), pp. 391–400 (2004)Google Scholar
  68. 68.
    Reisinger, J., Stanley, K.O., Miikkulainen, R.: Towards an empirical measure of evolvability. In: Genetic and Evolutionary Computation Conference (GECCO2005) Workshop Program, pp. 257–264. ACM Press, Washington, D.C. (2005)Google Scholar
  69. 69.
    Parmee, I.C.: Improving problem definition through interactive evolutionary computation. J. Artif. Intell. Eng. Design Analy. Manuf. Special Issue: Human-computer Interact. Eng. 16, 185–202 (2002)Google Scholar
  70. 70.
    Takagi, H.: Interactive evolutionary computation: Fusion of the capacities of EC optimization and human evaluation. Proc. IEEE 89, 1275–1296 (2001)CrossRefGoogle Scholar
  71. 71.
    Baluja, S., Pomerleau, D., Jochem, T.: Towards automated artificial evolution for computer-generated images. Connect. Sci. 6, 325–354 (1994)Google Scholar
  72. 72.
    Dawkins, R.: The evolution of evolvability. In: Langton, C.G. (ed.) Artificial Life, pp. 201–220. Addison-Wesley, Reading, MA (1989)Google Scholar
  73. 73.
    Greenfield, G.R.: Evolving expressions and art by choice. Leonard 33, 93–99 (2000)CrossRefGoogle Scholar
  74. 74.
    Lund, H.H., Pagliarini, L., Miglino, P.: Artistic design with GA and NN. In: Proceedings of the 1st Nordic Workshop on Genetic Algorithms and Their Applications (1NWGA), pp. 97–105 (1995)Google Scholar
  75. 75.
    McCormack, J.P.: Interactive evolution of L-system grammars for computer graphics modelling. In: Green, D.G., Bossomaier, T. (eds.) Complex Systems: From Biology to Computation, pp. 118–130. IOS Press, Amsterdam (1993)Google Scholar
  76. 76.
    Sims, K.: Artificial evolution for computer graphics. In: Proceedings of the 18th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’91), pp. 319–328. ACM Press, New York, NY (1991)Google Scholar
  77. 77.
    Smith, J.R.: Designing biomorphs with an interactive genetic algorithm. In: Belew, R.K., Booker, L.B. (eds.) Proceedings of the 4th International Conference on Genetic Algorithms (ICGA-91), pp. 535–538. Morgan Kaufmann, San Mateo, CA (1991)Google Scholar
  78. 78.
    Todd, S., Latham, W.: Evolutionary Art and Computers. Academic Press, London (1992)MATHGoogle Scholar
  79. 79.
    Dawkins, R.: The Blind Watchmaker. Longman, Essex, UK (1986)Google Scholar
  80. 80.
    Nishino, H., Takagi, H., Cho, S.-B., Utsumiya, K.: A 3D modeling system for creative design. In: 15th International Conference on Information Networking, pp. 479–486 (2001)Google Scholar
  81. 81.
    Todd, S., Latham, W.: The Mutation and Growth of Art by Computers, chapter 9, pp. 221–250. Morgan Kaufmann (1999)Google Scholar
  82. 82.
    Husbands, P., Germy, G., McIlhagga, M., Ives, R.: Two applications of genetic algorithms to component design. Evolutionary Computing. LNCS 1143, 50–61 (1996)Google Scholar
  83. 83.
    Andersen, T., Otter, C., Petschulat, C., Eoff, U., Menten, T., Davis, R., Crowley, B.: A biologically-derived approach to tissue modeling. In: Westwood, J. et al., (eds.) Technology and Informatics, pp. 15–21. IOS Press, Amsterdam (2005)Google Scholar
  84. 84.
    Miller, J.F.: Evolving developmental programs for adaptation, morphogenesis, and self-repair. In: Banzhaf, W., Christaller, T., Dittrich, P., Kim, J.T., Ziegler, J. (eds.) Advances in Artificial Life. 7th European Conference on Artificial Life, vol. 2801 of Lecture Notes in Artificial Intelligence, pp. 256–265. Springer, Dortmund, Germany (2003)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.School of Electrical Engineering and Computer ScienceUniversity of Central FloridaOrlandoUSA

Personalised recommendations