Advertisement

Genetica

, Volume 147, Issue 5–6, pp 401–409 | Cite as

Rate of change for the thermal adapted inversions in Drosophila subobscura

  • Goran Zivanovic
  • Conxita Arenas
  • Francesc MestresEmail author
Short Communication

Abstract

The changes of chromosomal inversion polymorphism composition of Drosophila subobscura in samples from Apatin (Serbia) were studied in a 24-years interval (1994–2018). The variation was significant for all autosomes and directional, increasing the inversions considered as ‘warm’, whereas those reported as ‘cold’ decreased. Furthermore, the Chromosomal Thermal Index (CTI), which allows studying the thermal adaptation of the whole karyotype increased significantly in that period of time. These results were in agreement with the indicators of global warming in Apatin: a trend to increase of the mean, maximum and minimum (this latter even significant) temperatures, and an erratic pattern of rainfall (also usual in global warming). The deviations from the Wright–Fisher model of genetic drift were used to consider the possible effect of migration or selection as evolutionary factors responsible for the change in inversion frequencies. To quantify approximately the rate of change in the frequencies, for each kind of inversions (‘cold’, ‘warm’ and ‘non-thermal adapted’), the difference in frequency between the Apatin samples obtained in 1994 and 2018 was computed and then it was divided by the number of years elapsed. This rate was always higher (from twice as many as thirty times more depending on the autosome) for thermal adapted inversions (‘cold’ or ‘warm’) than the ‘non-thermal’ adapted. From this study, it could be concluded that the chromosomal inversions of D. subobscura could change (in composition and frequencies) in a predictable direction and a rather ‘rapid’ rhythm to adapt to the global warming scenario.

Keywords

Chromosomal inversions Adaptation Selection Temperature Global warming Evolutionary rate 

Notes

Acknowledgements

We want to dedicate this research to Prof. A. Prevosti on the occasion of the centenary of his birth (1919–2019). We especially thank the comments and suggestions of the anonymous reviewers who clearly improved the earlier version of the manuscript. This research was financially supported by grants from the Ministry of Education, Science and Technological Development of the Republic of Serbia (Grant Number 173025), the Ministerio de Economía y Competitividad, Spain (CTM2017-88080 AEI/FEDER, UE) and the Generalitat de Catalunya, Spain (2017SGR 1120 and 2017SGR 622).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10709_2019_78_MOESM1_ESM.docx (166 kb)
Supplementary material 1 (DOCX 166 kb)
10709_2019_78_MOESM2_ESM.docx (16 kb)
Supplementary material 2 (DOCX 15 kb)

References

  1. Alexandri P, Triantafyllidis A, Papakostas S, Chatzinikos E, Platis P, Papageorgiou N et al (2012) The Balkans and the colonization of Europe: the post-glacial range expansion of the wild boar, Sus scrofa. J Biogeogr 39:713–723CrossRefGoogle Scholar
  2. Araúz P, Mestres F, Pegueroles C, Arenas C, Tzannidakis G, Krimbas CB, Serra L (2009) Tracking the origin of the American colonization by Drosophila subobscura: genetic comparison between Eastern and Western Mediterranean populations. J Zool Syst Evol Res 47:25–34CrossRefGoogle Scholar
  3. Arenas C, Zivanovic G, Mestres F (2018) Chromosomal Thermal Index: a comprehensive way to integrate the thermal adaptation of Drosophila subobscura whole karyotype. Genome 61:73–78PubMedCrossRefGoogle Scholar
  4. Balanyà J, Solé E, Oller JM, Sperlich D, Serra L (2004) Long-term changes in the chromosomal inversion polymorphism of Drosophila subobscura. II. European populations. J Zool Syst Evol Res 42:191–201CrossRefGoogle Scholar
  5. Balanyà J, Oller JM, Huey RB, Gilchrist GW, Serra L (2006) Global genetic change tracks global climate warming in Drosophila subobscura. Science 313:1773–1775PubMedCrossRefGoogle Scholar
  6. Balanyà J, Huey RB, Gilchrist GW, Serra L (2009) The chromosomal polymorphism of Drosophila subobscura: a microevolutionary weapon to monitor global change. Heredity 103:364–367PubMedCrossRefGoogle Scholar
  7. Begon M (1976) Temporal variations in the reproductive condition of Drosophila obscura Fallén and D. subobscura Collin. Oecologia 23:31–47PubMedCrossRefGoogle Scholar
  8. Begon M (1977) The effective size of a natural Drosophila subobscura population. Heredity 38:13–18PubMedCrossRefGoogle Scholar
  9. Begon M, Krimbas CB, Loukas M (1980) The genetics of Drosophila subobscura populations. XV. Effective size of a natural population estimated by three independent methods. Heredity 45:335–350CrossRefGoogle Scholar
  10. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57:289–300Google Scholar
  11. Carson HL (1955) The genetic characteristics of marginal populations of Drosophila. Cold Spring Harbor Symp Quant Biol 20:276–287PubMedCrossRefGoogle Scholar
  12. Cook J, Oreskes N, Doran PT et al. (2016) Consensus on consensus: a synthesis of consensus estimates on human-caused global warming. Environ Res Lett 11: Article ID 048002Google Scholar
  13. Crow JF, Kimura M (1970) An introduction to population genetics theory. Harper & Row Publishers, New YorkGoogle Scholar
  14. Dobzhansky Th (1970) Genetics of the evolutionary process. Columbia University Press, New YorkGoogle Scholar
  15. Galludo M, Canals J, Pineda-Cirera L, Esteve C, Rosselló M, Balanyà J, Arenas C, Mestres F (2018) Climatic adaptation of chromosomal inversions in Drosophila subobscura. Genetica 146:433–441PubMedCrossRefGoogle Scholar
  16. Gilchrist GW, Huey RB, Serra L (2001) Rapid evolution of wing size cline in Drosophila subobscura. Genetica 112–113:273–286PubMedCrossRefGoogle Scholar
  17. Gingerich PD (1983) Rates of evolution: effects of time and temporal scaling. Science 222:159–161PubMedCrossRefGoogle Scholar
  18. Haldane JBS (1949) Suggestions as to quantitative measurement of rates of evolution. Evolution 3:51–56PubMedCrossRefGoogle Scholar
  19. Heckel G, Burri R, Fink S, Desmet JF, Excoffier L (2005) Genetic structure and colonization processes in European populations of the common vole, M. arvalis. Evolution 59:2231–2242PubMedCrossRefGoogle Scholar
  20. Hendry AP, Kinnison MT (1999) Perspective: the pace of modern life: measuring rates of contemporary microevolution. Evolution 53:1637–1653PubMedCrossRefGoogle Scholar
  21. Hewitt GM (1999) Post-glacial re-colonization of European biota. Biol J Linn Soc 68:87–112CrossRefGoogle Scholar
  22. Hewitt GM (2000) The genetic legacy of the Quaternary ice ages. Nature 405:907–913PubMedCrossRefGoogle Scholar
  23. Huey RB, Gilchrist GW, Carlson ML, Berrigan D, Serra L (2000) Rapid evolution of a geographic cline in size in an introduced fly. Science 287:308–309PubMedCrossRefGoogle Scholar
  24. IPCC (2014) Climate Change 2014. Synthesis Report. In: Core Writing Team, Pachauri RK, Meyer LA (eds) Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change IPCC, Geneva, SwitzerlandGoogle Scholar
  25. Kindler C, Graciá E, Fritz U (2018) Extra-Mediterranean glacial refuges in barred and common grass snakes (Natrix helvetica, N. natrix). Sci Rep 8:1821PubMedPubMedCentralCrossRefGoogle Scholar
  26. Krimbas CB (1992) The inversion polymorphism of Drosophila subobscura. In: Krimbas CB, Powell JR (eds) Drosophila inversion polymorphism. CRC Press, Boca Raton (FL), pp 127–220Google Scholar
  27. Krimbas CB (1993) Drosophila subobscura. Biology, genetics and inversion polymorphism. Verlag Dr. Kovac, HamburgGoogle Scholar
  28. Krimbas CB, Loukas M (1980) The inversion polymorphism of Drosophila subobscura. Evol Biol 12:163–234CrossRefGoogle Scholar
  29. Kunze-Mühl E, Müller E (1958) Weitere Untersuchungen uber die chromosomale Struktur und die naturlichen Strukturtypen von Drosophila subobscura. Chromosoma 9:559–570PubMedCrossRefGoogle Scholar
  30. Kurbalija-Novicic Z, Jelic M, Savic T, Savic-Veselinovic M, Dimitrijevic D, Jovanovic M et al (2013) Effective population size in Drosophila subobscura: ecological and molecular approaches. J Biol Res 19:65–74Google Scholar
  31. Latorre A, Hernandez C, Martinez D, Castro JA, Ramón M, Moya A (1992) Population structure and mitochondrial DNA gene flow in Old World populations of Drosophila subobscura. Heredity 68:15–24PubMedCrossRefGoogle Scholar
  32. Lewontin RC, Moore JA, Provine WB, Wallace B (eds) (1981) Dobzhanky’s genetics of natural populations I-XLIII. Columbia University Press, New YorkGoogle Scholar
  33. Menozzi P, Krimbas CB (1992) The inversion polymorphism of D. subobscura revisited: synthetic maps of gene arrangement frequencies and their interpretation. J Evol Biol 5:625–641CrossRefGoogle Scholar
  34. Mestres F, Serra L (1991) Lethal allelism in Drosophila subobscura: difficulties in the estimation of certain population parameters. J Zool Syst Evolut-forsch 29:264–279CrossRefGoogle Scholar
  35. Mestres F, Pegueroles G, Prevosti A, Serra L (1990) Colonization of America by D. subobscura: lethal genes and the problem of the O5 inversion. Evolution 44:1823–1836PubMedGoogle Scholar
  36. Mestres F, Balanyà J, Segarra C, Prevosti A, Serra L (1992) Colonization of America by D. subobscura: analysis of the O5 inversions from Europe and America and their implications for the colonizing process. Evolution 46:1564–1568PubMedGoogle Scholar
  37. Mestres F, Serra L, Ayala FJ (1995) Colonization of the Americas by D. subobscura: lethal-gene allelism and association with chromosomal arrangements. Genetics 140:1297–1305PubMedPubMedCentralGoogle Scholar
  38. Mestres F, Balanyà J, Arenas C, Solé E, Serra L (2001) Colonization of America by D. subobscura: heterotic effect of chromosomal arrangements revealed by the persistence of lethal genes. Proc Natl Acad Sci USA 98:9167–9170PubMedCrossRefGoogle Scholar
  39. Orengo DJ, Prevosti A (1996) Temporal changes in chromosomal polymorphism of Drosophila subobscura related to climatic changes. Evolution 50:1346–1350PubMedCrossRefGoogle Scholar
  40. Orengo DJ, Puerma E, Aguadé M (2016) Monitoring chromosomal polymorphism in Drosophila subobscura over 40 years. Entomol Sci 19:215–221CrossRefGoogle Scholar
  41. Pascual M, Aquadro CF, Soto V, Serra L (2001) Microsatellite variation in colonizing and Palearctic populations of Drosophila subobscura. Mol Biol Evol 18:731–740PubMedCrossRefGoogle Scholar
  42. Pegueroles G, Papaceit M, Quintana A, Guillén A, Prevosti A, Serra L (1995) An experimental study of evolution in progress: clines for quantitative traits in colonizing and Palearctic populations of Drosophila. Evol Ecol 9:453–465CrossRefGoogle Scholar
  43. Pegueroles C, Aquadro CF, Mestres F, Pascual M (2013) Gene flow and gene flux shape evolutionary patterns of variation in Drosophila subobscura. Heredity 110:520–529PubMedPubMedCentralCrossRefGoogle Scholar
  44. Powell JR (1992) Inversion polymorphism in Drosophila pseudoobscura and Drosophila persimilis. In: Krimbas CB, Powell JR (eds) Drosophila inversion polymorphism. CRC Press, Boca Raton (FL), USA, pp 73–126Google Scholar
  45. Powell JR (1997) Progress and prospects in evolutionary biology. The Drosophila model. Oxford University Press, New YorkGoogle Scholar
  46. Prevosti A, Serra L, Ribó G, Aguadé M, Sagarra E, Monclús M, García MP (1985) The colonization of Drosophila subobscura in Chile. II. Clines in the chromosomal arrangements. Evolution 39:838–844PubMedCrossRefGoogle Scholar
  47. Prevosti A, Ribó G, Serra L, Aguadé M, Balañá J, Monclús M, Mestres F (1988) Colonization of America by Drosophila subobscura: experiment in natural populations that supports the adaptive role of chromosomal inversion polymorphism. Proc Natl Acad Sci USA 85:5597–5600PubMedCrossRefGoogle Scholar
  48. Prevosti A, Serra L, Aguadé M, Ribó G, Mestres F, Balañá J, Monclús M (1989) Colonization and establishment of the Palearctic species Drosophila subobscura in North and South America. In: Fontdevila A (ed) Evolutionary Biology of transient unstable populations. Springer, Berlin, pp 114–129CrossRefGoogle Scholar
  49. Rego C, Balanyà J, Fragata I, Matos M, Rezende EL, Santos M (2010) Clinal patterns of chromosomal inversion polymorphisms in Drosophila subobscura are partly associated with thermal preferences and heat stress resistance. Evolution 64:385–397PubMedCrossRefGoogle Scholar
  50. Rezende EL, Balanyà J, Rodríguez-Trelles F, Rego C, Fragata I, Matos M et al (2010) Climate change and chromosomal inversions in Drosophila subobscura. Clim Res 43:103–114CrossRefGoogle Scholar
  51. Ripple WJ, Wolf C, Newsome TM et al (2017) World scientists’ warning to humanity: a second notice. Bioscience 67:1026–1028CrossRefGoogle Scholar
  52. Rodríguez-Trelles F, Rodríguez MA (1998) Rapid microevolution and loss of chromosomal diversity in Drosophila in response to climate warming. Evol Ecol 12:829–838CrossRefGoogle Scholar
  53. Solé E, Balanyà J, Sperlich D, Serra L (2002) Long-term changes in the chromosomal inversion polymorphism of Drosophila subobscura. I. Mediterranean populations from Southwestern Europe. Evolution 56:830–835PubMedCrossRefGoogle Scholar
  54. Taberlet P, Fumagalli L, Wust-Saucy A-G, Cosson JF (1998) Comparative phylogeography and postglacial colonization routes in Europe. Mol Ecol 7:453–464PubMedCrossRefGoogle Scholar
  55. Zivanovic G, Mestres F (2010) Viabilities of Drosophila subobscura homo- and heterokaryo-types at optimal and stress temperatures. I. Analysis over several years. Hereditas 147:70–81PubMedCrossRefGoogle Scholar
  56. Zivanovic G, Mestres F (2011) Changes in chromosomal polymorphism and global warming: the case of Drosophila subobscura from Apatin (Serbia). Genet Mol Biol 34:489–495PubMedPubMedCentralCrossRefGoogle Scholar
  57. Zivanovic G, Andjelkovic M, Marinkovic D (2002) Chromosomal inversion polymorphism of Drosophila subobscura from south-eastern part of Europe. J Zool Syst Evol Res 40:201–204CrossRefGoogle Scholar
  58. Zivanovic G, Arenas C, Mestres F (2007) The genetic structure of Balkan populations of Drosophila subobscura. Hereditas 144:120–128PubMedCrossRefGoogle Scholar
  59. Zivanovic G, Arenas C, Mestres F (2012) Short- and long-term changes in chromosomal inversion polymorphism and global warming: Drosophila subobscura from the Balkans. Isr J Ecol Evol 58:289–311Google Scholar
  60. Zivanovic G, Arenas C, Mestres F (2014a) Inbreeding and thermal adaptation in Drosophila subobscura. Genome 57:481–488PubMedCrossRefGoogle Scholar
  61. Zivanovic G, Arenas C, Mestres F (2014b) Inversion polymorphism in two Serbian natural populations of Drosophila subobscura: analysis of long term changes. Russ J Genet 50:638–644CrossRefGoogle Scholar
  62. Zivanovic G, Arenas C, Mestres F (2015) Medium-term changes in Drosophila subobscura chromosomal inversion polymorphism: a possible relation with global warming? J Genet 94:343–346PubMedCrossRefGoogle Scholar
  63. Zivanovic G, Arenas C, Mestres F (2016) Individual inversions or their combinations: which is the main selective target in a natural population of Drosophila subobscura? J Evol Biol 29:657–664PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Genetics, Institute for Biological Research “Sinisa Stankovic”University of BelgradeBelgradeSerbia
  2. 2.Departament de Genètica, Microbiologia i Estadística, Secció EstadísticaUniversitat de BarcelonaBarcelonaSpain
  3. 3.Departament de Genètica, Microbiologia i Estadística, Secció Genètica Biomèdica, Evolució i Desenvolupament, Facultat de BiologiaUniversitat de BarcelonaBarcelonaSpain
  4. 4.IRBio – Institut de Recerca de la BiodiversitatUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations