Advertisement

Genetica

, Volume 147, Issue 3–4, pp 291–302 | Cite as

Desiccation-induced changes in recombination rate and crossover interference in Drosophila melanogaster: evidence for fitness-dependent plasticity

  • Dau Dayal Aggarwal
  • Sviatoslav Rybnikov
  • Irit Cohen
  • Zeev Frenkel
  • Eugenia Rashkovetsky
  • Pawel Michalak
  • Abraham B. KorolEmail author
Original Paper

Abstract

Meiotic recombination is evolutionarily ambiguous, as being associated with both benefits and costs to its bearers, with the resultant dependent on a variety of conditions. While existing theoretical models explain the emergence and maintenance of recombination, some of its essential features remain underexplored. Here we focus on one such feature, recombination plasticity, and test whether recombination response to stress is fitness-dependent. We compare desiccation stress effects on recombination rate and crossover interference in chromosome 3 between desiccation-sensitive and desiccation-tolerant Drosophila lines. We show that relative to desiccation-tolerant genotypes, desiccation-sensitive genotypes exhibit a significant segment-specific increase in single- and double-crossover frequencies across the pericentromeric region of chromosome 3. Significant changes (relaxation) in crossover interference were found for the interval pairs flanking the centromere and extending to the left arm of the chromosome. These results indicate that desiccation is a recombinogenic factor and that desiccation-induced changes in both recombination rate and crossover interference are fitness-dependent, with a tendency of less fitted individuals to produce more variable progeny. Such dependence may play an important role in the regulation of genetic variation in populations experiencing environmental challenges.

Keywords

Recombination rate Crossover interference Plasticity Fitness dependence Desiccation Drosophila melanogaster 

Notes

Acknowledgments

We are grateful to two anonymous reviewers for critical comments and corrections which allowed to improve the manuscript. We also thank Kostas Illiadi, Eugene Kandel and Marios Kyriazis for fruitful discussions on soma-germline interactions.

Funding

The study was supported by the Israel Science Foundation (grant 1844/17); the University Grants Commission, India (DS Kothari project grant F.4-2/2006(BSR)/BL/16-17/0330); the Council for Higher Education of the Israeli Ministry of Education; and the Israeli Ministry of Aliyah and Integration.

References

  1. Aggarwal DD, Rashkovetsky E, Michalak P et al (2015) Experimental evolution of recombination and crossover interference in Drosophila caused by directional selection for stress-related traits. BMC Biol 13:101.  https://doi.org/10.1186/s12915-015-0206-5 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Agrawal AF, Hadany L, Otto SP (2005) The evolution of plastic recombination. Genetics 171:803–812.  https://doi.org/10.1534/genetics.105.041301 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Baker BS, Hall JC (1976) Meiotic mutants: genie control of meiotic recombination and chromosome segregation. In: Ashburner M, Novitski E (eds) The genetics and biology of Drosophila. Academic Press, New York, pp 351–434Google Scholar
  4. Bomblies K, Higgins JD, Yant L (2015) Meiosis evolves: adaptation to external and internal environments. New Phytol 208:306–323.  https://doi.org/10.1111/nph.13499 CrossRefPubMedGoogle Scholar
  5. Bomblies K, Jones G, Franklin C, Zickler D, Kleckner N (2016) The challenge of evolving stable polyploidy: could an increase in “crossover interference distance” play a central role? Chromosoma 125(2):287–300CrossRefPubMedPubMedCentralGoogle Scholar
  6. Borodin PM (1987) Stress and genetic variation. Genetika 23:1003–1010 (in Russian) PubMedGoogle Scholar
  7. Borodin PM, Belyaev DK (1980a) Effect of stress on the rate of crossing-over in the 2nd chromosome of domestic mouse. Dokl Akad Nauk SSSR 253:727–729 (in Russian) PubMedGoogle Scholar
  8. Borodin PM, Belyaev DK (1980b) Effect of emotional stress on recombination rate in chromosome 1 of house mouse. Dokl Akad Nauk SSSR 286:726–728 (in Rissian) Google Scholar
  9. Bownes M, Scott A, Shirras A (1988) Dietary components modulate yolk protein gene transcription in Drosophila melanogaster. Development 103:119–128PubMedGoogle Scholar
  10. Chandley AC (1968) The effect of X-rays on female germ cells of Drosophila melanogaster. III. A comparison with heat-treatment on crossing-over in the X-chromosome. Mutat Res 5:93–107.  https://doi.org/10.1017/cbo9781107415324.004 CrossRefPubMedGoogle Scholar
  11. Charlesworth B (1993) Directional selection and the evolution of sex and recombination. Genet Res 61:205–224.  https://doi.org/10.1017/s0016672300031372 CrossRefPubMedGoogle Scholar
  12. Davring L, Sunner M (1973) Female meiosis and embryonic mitosis in Drosophila melanogaster. Hereditas 73:51–64.  https://doi.org/10.1111/j.1601-5223.1973.tb01067.x CrossRefPubMedGoogle Scholar
  13. Denell RE, Keppy DO (1979) The nature of genetic recombination near the third chromosome centromere of Drosophila melanogaster. Genetics 93:117–130PubMedPubMedCentralGoogle Scholar
  14. Fagegaltier D, König A, Gordon A et al (2014) A genome-wide survey of sexually dimorphic expression of Drosophila miRNAs identifies the steroid hormone-induced miRNA let-7 as a regulator of sexual identity. Genetics 198:647–668.  https://doi.org/10.1534/genetics.114.169268 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Foss E, Lande R, Stahl FW, Steinberg CM (1993) Chiasma interference as a function of genetic distance. Genetics 133:681–691PubMedPubMedCentralGoogle Scholar
  16. Fujitani Y, Mori S, Kobayashi I (2002) A reaction-diffusion model for interference in meiotic crossing over. Genetics 161:365–372PubMedPubMedCentralGoogle Scholar
  17. Gessler DDG, Xu S (2000) Meiosis and the evolution of recombination at low mutation rates. Genetics 156:449–456PubMedPubMedCentralGoogle Scholar
  18. Goldstein DB, Bergman A, Feldman MW (1993) The evolution of interference: reduction of recombination among three loci. Theor Popul Biol 44:246–259CrossRefPubMedGoogle Scholar
  19. Gorlov IP, Borodin PM (1986) Effect of emotional stress on the frequency of meiotic abnormalities in male mice. Genetika 22:1019–1024 (in Russian) PubMedGoogle Scholar
  20. Graubard MA (1932) Inversion in Drosophila melanogaster. Genetics 17:81–105PubMedPubMedCentralGoogle Scholar
  21. Graubard MA (1934) Temperature effect on interference and crossing over. Genetics 19:83–94PubMedPubMedCentralGoogle Scholar
  22. Grell RF (1978) A comparison of heat and interchromosomal effects on recombination and interference in Drosophila melanogaster. Genetics 89:65–77PubMedPubMedCentralGoogle Scholar
  23. Gueijman A, Ayali A, Ram Y, Hadany L (2013) Dispersing away from bad genotypes: the evolution of fitness-associated dispersal (FAD) in homogeneous environments. BMC Evol Biol 13:125.  https://doi.org/10.1186/1471-2148-13-125 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Hadany L, Beker T (2003a) On the evolutionary advantage of fitness-associated recombination. Genetics 165:2167–2179PubMedPubMedCentralGoogle Scholar
  25. Hadany L, Beker T (2003b) Fitness-associated recombination on rugged adaptive landscapes. J Evol Biol 16:862–870.  https://doi.org/10.1046/j.1420-9101.2003.00586.x CrossRefPubMedGoogle Scholar
  26. Hadany L, Otto SP (2007) The evolution of condition-dependent sex in the face of high costs. Genetics 176:1713–1727.  https://doi.org/10.1534/genetics.107.074203 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Hayman DL, Parsons PA (1960) The effect of temperature, age and an inversion on recombination values and interference in the X-chromosome of Drosophila melanogaster. Genetics 32:74–88Google Scholar
  28. Hingston PA, Piercey MJ, Truelstrup Hansen L (2015) Genes associated with desiccation and osmotic stress in Listeria monocytogenes as revealed by insertional mutagenesis. Appl Environ Microbiol 81:5350–5362.  https://doi.org/10.1128/aem.01134-15 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Hiraizumi Y (1971) Spontaneous recombination in Drosophila melanogaster males. Proc Natl Acad Sci USA 68:268–270.  https://doi.org/10.1073/pnas.68.2.268 CrossRefPubMedGoogle Scholar
  30. Hoffmann AA, Parsons PA (1991) Evolutionary genetics and environmental stress. Oxford University Press, New YorkGoogle Scholar
  31. Huang DW, Sherman BT, Zheng X et al (2009) Extracting biological meaning from large gene lists with DAVID. Curr Protoc Bioinform 27:13.11.1–13.11.13.  https://doi.org/10.1002/0471250953.bi1311s27 CrossRefGoogle Scholar
  32. Hunter CM, Huang W, Mackay TFC, Singh ND (2016) The genetic architecture of natural variation in recombination rate in Drosophila melanogaster. PLoS Genet 12:e1005951.  https://doi.org/10.1371/journal.pgen.1005951 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Jackson S, Nielsen DM, Singh ND (2015) Increased exposure to acute thermal stress is associated with a non-linear increase in recombination frequency and an independent linear decrease in fitness in Drosophila. BMC Evol Biol 15:175.  https://doi.org/10.1186/s12862-015-0452-8 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kacsoh BZ, Bozler J, Ramaswami M, Bosco G (2015) Social communication of predator-induced changes in Drosophila behavior and germ line physiology. Elife 4:1–36.  https://doi.org/10.7554/elife.07423 CrossRefGoogle Scholar
  35. Kang L, Aggarwal DD, Rashkovetsky E et al (2016) Rapid genomic changes in Drosophila melanogaster adapting to desiccation stress in an experimental evolution system. BMC Genom 17:233.  https://doi.org/10.1186/s12864-016-2556-y CrossRefGoogle Scholar
  36. Kerstes NA, Bérénos C, Schmid-Hempel P, Wegner KM (2012) Antagonistic experimental coevolution with a parasite increases host recombination frequency. BMC Evol Biol 12:18.  https://doi.org/10.1186/1471-2148-12-18 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Kilias G, Alahiotis SN, Onoufriou A (1979) The alcohol dehydrogenase locus affects meiotic crossing-over in Drosophila melanogaster. Genetica 50:173–177CrossRefGoogle Scholar
  38. Kimura M (1956) A model of a genetic system which leads to closer linkage by natural selection. Evolution (N Y) 10:278–287.  https://doi.org/10.1111/j.1558-5646.1956.tb02852.x CrossRefGoogle Scholar
  39. King RC (1970) The meiotic behavior of the Drosophila oocyte. Int Rev Cytol 28:125–168.  https://doi.org/10.1016/s0074-7696(08)62542-5 CrossRefPubMedGoogle Scholar
  40. King RC, Aggarwal SK, Aggarwal U (1968) The development of the female Drosophila reproductive system. J Morphol 124:143–165.  https://doi.org/10.1002/jmor.1051240203 CrossRefPubMedGoogle Scholar
  41. Kohl KP, Singh ND (2018) Experimental evolution across different thermal regimes yields genetic divergence in recombination fraction but no divergence in temperature associated plastic recombination. Evolution (N Y) 72:989–999.  https://doi.org/10.1111/evo.13454 CrossRefGoogle Scholar
  42. König A, Shcherbata HR (2015) Soma influences GSC progeny differentiation via the cell adhesion-mediated steroid-let-7-Wingless signaling cascade that regulates chromatin dynamics. Biol Open 4:285–300.  https://doi.org/10.1242/bio.201410553 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Korol AB, Preygel IA, Preygel SI (1994) Recombination variability and evolution. Chapman & Hall, LondonGoogle Scholar
  44. Laws KM, Drummond-Barbosa D (2017) Control of germline stem cell lineages by diet and physiology. In: Arur S (ed) Signaling-mediated control of cell division. Springer, Cham, pp 67–99CrossRefGoogle Scholar
  45. Mandal RK, Kwon YM (2017) Global screening of Salmonella enterica serovar Typhimurium genes for desiccation survival. Front Microbiol 8:1723CrossRefPubMedPubMedCentralGoogle Scholar
  46. Markow TA, Matzkin LM, Watts TD (2007) Desiccation resistance in four Drosophila species: sex and population effects. Fly (Austin) 1:268–273.  https://doi.org/10.4161/fly.5293 CrossRefGoogle Scholar
  47. McClintock B (1984) The significance of response of the genome to challenge. Science 226:792–801.  https://doi.org/10.1126/science.15739260 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Modliszewski JL, Copenhaver GP (2017) Meiotic recombination gets stressed out: CO frequency is plastic under pressure. Curr Opin Plant Biol 36:95–102.  https://doi.org/10.1016/j.pbi.2016.11.019 CrossRefPubMedGoogle Scholar
  49. Neel JV (1941) A relation between larval nutrition and the frequency of crossing over in the third chromosome of Drosophila melanogaster. Genetics 26:506–516PubMedPubMedCentralGoogle Scholar
  50. Nei M (1967) Modification of linkage intensity by natural selection. Genetics 57:625–641PubMedPubMedCentralGoogle Scholar
  51. Parisi MJ, Gupta V, Sturgill D et al (2010) Germline-dependent gene expression in distant non-gonadal somatic tissues of Drosophila. BMC Genom 11:346.  https://doi.org/10.1186/1471-2164-11-346 CrossRefGoogle Scholar
  52. Plough HH (1917) The effect of temperature on crossingover in Drosophila. J Exp Zool 24:147–209.  https://doi.org/10.1104/pp.4.2.281 CrossRefGoogle Scholar
  53. Plough HH (1921) Further studies on the effect of temperature on crossing over. J Exp Zool 32:187–202.  https://doi.org/10.1002/jez.1400320202 CrossRefGoogle Scholar
  54. Politzer O (1940) Veränderungen der Crossoverhäufigkeit Durch Einwirkung von Temperatur und Alter (Versuche am III. Chromosom der Drosophila melanogaster). Z Indukt Abstamm Vererbungsl 78:129–147Google Scholar
  55. Rajpurohit S, Gefen E, Bergland AO et al (2018) Spatiotemporal dynamics and genome-wide association analysis of desiccation tolerance in Drosophila melanogaster. Mol Ecol 27:3525–3540.  https://doi.org/10.1111/mec.14814 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Rybnikov SR, Frenkel ZM, Korol AB (2017) What drives the evolution of condition-dependent recombination in diploids? Some insights from simulation modelling. Philos Trans R Soc B 372:20160460.  https://doi.org/10.1098/rstb.2016.0460 CrossRefGoogle Scholar
  57. Rybnikov SR, Frenkel ZM, Fahima T, Korol AB (2018a) The evolutionary advantage of condition-dependent recombination in a Red Queen model with diploid antagonists. bioRxiv 478966:1–16.  https://doi.org/10.1101/478966 CrossRefGoogle Scholar
  58. Rybnikov SR, Frenkel ZM, Korol AB (2018b) Fitness-dependent recombination can be evolutionarily advantageous in diploids under mutation-selection balance. bioRxiv 381228:1–21.  https://doi.org/10.1101/381228 CrossRefGoogle Scholar
  59. Rzezniczak TZ, Merritt TJS (2012) Interactions of NADP-reducing enzymes across varying environmental conditions a model of biological complexity. G3: Genes Genomes Genet 2:1613–1623.  https://doi.org/10.1534/g3.112.003715 CrossRefGoogle Scholar
  60. Séguéla-Arnaud M, Crismani W, Larchevêque C et al (2015) Multiple mechanisms limit meiotic crossovers: TOP3α and two BLM homologs antagonize crossovers in parallel to FANCM. Proc Natl Acad Sci USA 112:4713–4718.  https://doi.org/10.1073/pnas.1423107112 CrossRefPubMedGoogle Scholar
  61. Segura J, Ferretti L, Ramos-Onsins S, Capilla L, Farre M, Reis F, Oliver-Bonet M, Fernandez-Bellon H, Garcia F, Garcia-Caldes M, Robinson TJ, Ruiz- Herrera A (2013) Evolution of recombination in eutherian mammals: insights into mechanisms that affect recombination rates and crossover interference. Proc Roy Soci B Biol Sci 280(1771):20131945–20131945CrossRefGoogle Scholar
  62. Shaw FH, Baer CF (2011) Fitness-dependent mutation rates in finite populations. J Evol Biol 24:1677–1684.  https://doi.org/10.1111/j.1420-9101.2011.02320.x CrossRefPubMedGoogle Scholar
  63. Singh ND (2019) Wolbachia infection associated with increased recombination in Drosophila. G3: Genes Genomes Genet 9:229–237.  https://doi.org/10.1534/g3.118.200827 CrossRefGoogle Scholar
  64. Singh ND, Criscoe DR, Skolfield S et al (2015) Fruit flies diversify their offspring in response to parasite infection. Science 349:747–750CrossRefPubMedGoogle Scholar
  65. Stapley J, Feulner PGD, Johnston SE et al (2017) Variation in recombination frequency and distribution across eukaryotes: patterns and processes. Philos Trans R Soc B 372:20160455.  https://doi.org/10.1098/rstb.2016.0455 CrossRefGoogle Scholar
  66. Stern C (1926) An effect of temperature and age on crossing-over in the first chromosome of Drosophila melanogaster. Proc Natl Acad Sci USA 12:530–532CrossRefPubMedGoogle Scholar
  67. Stevison LS, Sefick S, Rushton C, Graze RM (2017) Recombination rate plasticity: revealing mechanisms by design. Philos Trans R Soc London B 372:20160459.  https://doi.org/10.1098/rstb.2016.0459 CrossRefGoogle Scholar
  68. Szauter P (1984) An analysis of regional constraints on exchange in Drosophila melanogaster using recombination-defective meiotic mutants. Genetics 106:45–71PubMedPubMedCentralGoogle Scholar
  69. Telonis-Scott M, Sgro CM, Hoffmann AA, Griffin PC (2016) Cross-study comparison reveals common genomic, network, and functional signatures of desiccation resistance in Drosophila melanogaster. Mol Biol Evol 33:1053–1067.  https://doi.org/10.1093/molbev/msv349 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Thaler DS (1994) The evolution of genetic intelligence. Science 264:224–225CrossRefPubMedGoogle Scholar
  71. Thorat L, Oulkar D, Banerjee K et al (2017) High-throughput mass spectrometry analysis revealed a role for glucosamine in potentiating recovery following desiccation stress in Chironomus. Sci Rep 7:3659.  https://doi.org/10.1038/s41598-017-03572-5 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Verde LA (2003) The effect of stress on meiotic recombination in maize (Zea mays L.). Iowa State UniversityGoogle Scholar
  73. Wexler Y, Rokhlenko O (2007) Prisoner’s dilemma posed by fitness-associated recombination strategies. J Theor Biol 247:1–10.  https://doi.org/10.1016/j.jtbi.2007.01.031 CrossRefPubMedGoogle Scholar
  74. Woodruff RC, Thompson JN (1977) An analysis of spontaneous recombination in Drosophila melanogaster males. Heredity (Edinb) 38:291–307.  https://doi.org/10.1038/hdy.1977.92 CrossRefGoogle Scholar
  75. Zetka MC, Rose AM (1995) Mutant rec-1 eliminates the meiotic pattern of crossing over in Caenorhabditis elegans. Genetics 141:1339–1349PubMedPubMedCentralGoogle Scholar
  76. Zhang L, Liang Z, Hutchinson J, Kleckner N (2014) Crossover patterning by the beam-film model: analysis and implications. PLoS Genet 10:e1004042.  https://doi.org/10.1371/journal.pgen.1004042 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Zhong W, Priest NK (2011) Stress-induced recombination and the mechanism of evolvability. Behav Ecol Sociobiol 65:493–502.  https://doi.org/10.1007/s00265-010-1117-7 CrossRefGoogle Scholar
  78. Zhuchenko AA, Korol AB (1985) Recombination in evolution and breeding. Nauka, MoscowGoogle Scholar
  79. Zhuchenko AA, Korol AB, Gavrilenko TA, Kibenko TY (1986) The relation between genotype adaptivity and reactivity of its recombination characteristics under temperature effect. Genetika 22:966–974 (in Russian) Google Scholar
  80. Zickler D, Kleckner N (2016) A few of our favorite things: pairing, the bouquet, crossover interference and evolution of meiosis. Semin Cell Dev Biol 54:135–148.  https://doi.org/10.1016/j.semcdb.2016.02.024 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Dau Dayal Aggarwal
    • 1
    • 2
  • Sviatoslav Rybnikov
    • 1
    • 3
  • Irit Cohen
    • 1
    • 3
  • Zeev Frenkel
    • 4
  • Eugenia Rashkovetsky
    • 1
  • Pawel Michalak
    • 1
    • 5
    • 6
  • Abraham B. Korol
    • 1
    • 3
    Email author
  1. 1.Institute of EvolutionUniversity of HaifaHaifaIsrael
  2. 2.Department of ZoologyBanaras Hindu UniversityVaranasiIndia
  3. 3.Department of Evolutionary and Environmental BiologyUniversity of HaifaHaifaIsrael
  4. 4.Department of Mathematics and Computational ScienceAriel UniversityArielIsrael
  5. 5.Edward Via College of Osteopathic MedicineBlacksburgUSA
  6. 6.Center for One Health ResearchVirginia-Maryland College of Veterinary MedicineBlacksburgUSA

Personalised recommendations