pp 1–16 | Cite as

Genetic diversity and demography of the critically endangered Roberts’ false brook salamander (Pseudoeurycea robertsi) in Central Mexico

  • Armando SunnyEmail author
  • Luis Duarte-deJesus
  • Arlene Aguilera-Hernández
  • Fabiola Ramírez-Corona
  • Marco Suárez-Atilano
  • Ruth Percino-Daniel
  • Javier Manjarrez
  • Octavio Monroy-Vilchis
  • Andrea González-Fernández
Original Paper


Land use changes are threatening the maintenance of biodiversity. Genetic diversity is one of the main indicators of biological diversity and is highly important as it shapes the capability of populations to respond to environmental changes. We studied eleven populations of Pseudoeurycea robertsi, a micro-endemic and critically endangered species from the Nevado de Toluca Volcano, a mountain that is part of the Trans-Mexican Volcanic Belt, Mexico. We sequenced the mitochondrial cytochrome b gene from 71 individuals and genotyped 9 microsatellites from 150 individuals. Our results based on the cytochrome b showed two divergent lineages, with moderate levels of genetic diversity and a recently historical demographic expansion. Microsatellite-based results indicated low levels of heterozygosity for all populations and few alleles per locus, as compared with other mole salamander species. We identified two genetically differentiated subpopulations with a significant level of genetic structure. These results provide fundamental data for the development of management plans and conservation efforts for this critically endangered species.


Conservation Endemic species Plethodontidae Population genetics Nevado de Toluca Volcano Trans-Mexican Volcanic Belt 



We are grateful to the editor Juan L. Bouzat and two anonymous reviewers for their comments. AAH is thankful for the scholarship received from COMECYT (Grant: 17ABTL0134). A.S received financial support from the Secretary of Research and Advanced Studies (SYEA) of the Autonomous University of the State of Mexico (Grant: 4732/2019CIB). We thank Ricardo Lara-Ramírez for valuable English editing.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest. Our study received the field permits and the approval of the ethics committee from Universidad Autónoma del Estado de México and SEMARNAT (SGPA/DGVS/05701/16).

Supplementary material

10709_2019_58_MOESM1_ESM.docx (1.4 mb)
Supplementary material 1 (DOCX 1413 KB)


  1. Archer FI, Adams PE, Schneiders BB (2017) Stratag: an R package for manipulating, summarizing and analysing population genetic data. Mol Eco Resour 17(1):5–11CrossRefGoogle Scholar
  2. Arens P, van der Sluis T, van’t Westende WP, Vosman B, Vos CC, Smulders MJ (2007) Genetic population differentiation and connectivity among fragmented Moor frog (Rana arvalis) populations in The Netherlands. Landsc Ecol 22(10):1489–1500CrossRefGoogle Scholar
  3. Arntzen JW, Smithson A, Oldham RS (1999) Marking and tissue sampling effects on body condition and survival in the newt Triturus cristatus. J Herpetol 33:567–576CrossRefGoogle Scholar
  4. Bache SM, Wickham H (2016) MAGRITTR: a forward-pipe operator for R. R package version, 1.5(1)Google Scholar
  5. Barbosa O, Marquet PA (2002) Effects of forest fragmentation on the beetle assemblage at the relict forest of Fray Jorge. Chile Oecol 132:296–306CrossRefGoogle Scholar
  6. Beebee TJC, Griffiths RA (2005) The amphibian decline crisis: a watershed for conservation biology? Biol Cons 125:271–285CrossRefGoogle Scholar
  7. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57:289–300Google Scholar
  8. Bille T (2009) Field observations on the salamanders (Caudata: Ambystomatidae, Plethodontidae) of Nevado de Toluca, Mexico. Raices 1(2):5Google Scholar
  9. Braun M, McAuliffe J (2010) Variational inference for large-scale models of discrete choice. J Am Stat Assoc 105(489):324–335CrossRefGoogle Scholar
  10. Bruvo R, Michiels NK, D’souza TG, Schulenburg H (2004) A simple method for the calculation of microsatellite genotype distances irrespective of ploidy level. Mol Ecol 13(7):2101–2106CrossRefPubMedGoogle Scholar
  11. Carey C, Alexander MA (2003) Climate change and amphibian declines: is there a link? Divers Distrib 9(2):111–121CrossRefGoogle Scholar
  12. Chapuis MP, Estoup A (2006) FreeNA: microsatellite null alleles and estimation of population differentiation. Mol Biol Evol chapuimp@ ensam. inra. frGoogle Scholar
  13. Chiesa S, Lucentini L, Freitas R, Nonnis Marzano F, Ferrari C, Filonzi L, Breda S, Minello F, Figueira E, Argese E (2016) Null alleles of microsatellites for Manila clam Ruditapes philippinarum. Anim Genet 47(1):135–136CrossRefPubMedGoogle Scholar
  14. Corander J, Marttinen P, Sirén J, Tang J (2008) Enhanced Bayesian modelling in BAPS software for learning genetic structures of populations. BMC Bioinform 9(1):539CrossRefGoogle Scholar
  15. Cournet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent populations bottleneck from allele frequency data. Genetics 144:2001–2014Google Scholar
  16. Crump ML, Scott NJ Jr (1994) Visual encounter Surveys. In: Heyer WR, Donnelly MA, McDiarmid RW, Hayek LC, Foster MC (eds) Measuring and monitoring biological diversity: standard methods for amphibians. Smithsonian Institution Press, Washington, pp 84–92Google Scholar
  17. Daszak P, Cunningham AA, Hyatt AD (2003) Infectious disease and amphibian population declines. Divers Distrib 9(2):141–150CrossRefGoogle Scholar
  18. Davic RD, Welsh HH Jr (2004) On the ecological roles of salamanders. Annu Rev Ecol Evol Syst 35:405–434CrossRefGoogle Scholar
  19. Degner JF, Stout IJ, Roth JD, Parkinson CL (2007) Population genetics and conservation of the threatened southeastern beach mouse (Peromyscus polionotus niveiventris): subspecies and evolutionary units. Conserv Genet 8:1441–1452CrossRefGoogle Scholar
  20. DeSalle R, Templeton AR, Mori I, Pletscher S, Johnston JS (1987) Temporal and spatial heterogeneity of mtDNA polymorphisms in natural populations of Drosophila mercatorum. Genetics 116:215–223PubMedPubMedCentralGoogle Scholar
  21. DeYoung RW, Honneycutt RL (2005) The molecular toolbox: genetic techniques in wildlife ecology and management. J Wildl Manag 69:1362–1384CrossRefGoogle Scholar
  22. Diario Oficial de la Federación Mexicana (DOF) (2013) Decreto que reforma, deroga y adiciona diversas disposiciones del diverso publicado el 25 de enero de 1936, por el que se declaró Parque Nacional la montaña denominada ‘‘Nevado de Toluca’’ que fue modificado por el diverso publicado el 19 de febrero de 1937. conanp/documentos/decreto-que-reforma-deroga-y-adiciona-diversasdisposiciones-del-diverso-por-el-que-se-declaro-parque-nacional-el-nevado-de-toluca
  23. Do C, Waples RS, Peel D, Macbeth GM, Tillett BJ, Ovenden JR (2014) NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol Eco Resour 14(1):209–214CrossRefGoogle Scholar
  24. Domínguez-Domínguez O, Vázquez-Domínguez E (2009) Filogeografía: aplicaciones en taxonomía y conservación. Anim Biodivers Conserv 32(1):59–70Google Scholar
  25. Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7(1):214CrossRefPubMedPubMedCentralGoogle Scholar
  26. Ducatez S, Shine R (2017) Drivers of extinction risk in terrestrial vertebrates. Conserv Lett 10:186–194CrossRefGoogle Scholar
  27. Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361CrossRefGoogle Scholar
  28. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620CrossRefPubMedGoogle Scholar
  29. Excoffier L, Lischer HE (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Eco Resour 10(3):564–567CrossRefGoogle Scholar
  30. Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515CrossRefGoogle Scholar
  31. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587PubMedPubMedCentralGoogle Scholar
  32. Flores-Villela O, Canseco-Márquez L (2007) Riqueza de la herpetofauna. Universidad Nacional Autónoma de México, México, pp 407–420Google Scholar
  33. Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309:570–574CrossRefPubMedGoogle Scholar
  34. Franco-Maass S, Regil-García HH, González-Esquivel C, Nava-Bernal G (2006) Cambio de uso del suelo y vegetación en el Parque Nacional Nevado de Toluca, México, en el periodo 1972–2000. Invest Geog 61:38–57Google Scholar
  35. Frankham R (1996) Relationship of genetic variation to population size in wildlife. Conserv Biol 10:1500–1508CrossRefGoogle Scholar
  36. Frankham R (1998) Inbreeding and extinction: island populations. Conserv Biol 12(3):665–675CrossRefGoogle Scholar
  37. Frankham R, Ballou J, Briscoe D (2003) Introduction to conservation genetics. Cambridge University Press, CambridgeGoogle Scholar
  38. Frankham R, Ballou J, Briscoe D (2005) Introduction to conservation genetics. Cambridge University Press, CambridgeGoogle Scholar
  39. Frías-Alvarez P, Zúniga-Vega JJ, Flores-Villela O (2010) A general assessment of the conservation status and decline trends of Mexican amphibians. Biodivers Conserv 19(13):3699–3742CrossRefGoogle Scholar
  40. Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147(2):915–925PubMedPubMedCentralGoogle Scholar
  41. Fu YX, Li WH (1993) Statistical tests of neutrality of mutations. Genetics 133(3):693–709PubMedPubMedCentralGoogle Scholar
  42. Funk WC, Blouin MS, Corn PS, Maxell BA, Pilliod DS, Amish S, Allendorf FW (2005) Population structure of Columbia spotted frogs (Rana luteiventris) is strongly affected by the landscape. Mol Ecol 14:483–496CrossRefPubMedGoogle Scholar
  43. Gariboldi MC, Túnez JI, Failla M, Hevia M, Panebianco MV, Paso Viola MN, Cappozzo HL (2016) Patterns of population structure at microsatellite and mitochondrial DNA markers in the franciscana dolphin (Pontoporia blainvillei). Ecol evol 6(24):8764–8776CrossRefPubMedPubMedCentralGoogle Scholar
  44. Garza JC, Williamson EG (2001) Detection of reduction in population size using data from microsatellite loci. Mol Ecol 10(2):305–318CrossRefPubMedGoogle Scholar
  45. Gergits WF, Jaeger RG (1990) Field observations of the behavior of the red-backed salamander (Plethodon cinereus): courtship and agonistic interactions. J Herpetol 24(1):93–95CrossRefGoogle Scholar
  46. Gibbs JP (1998a) Amphibian movements in response to forest edges, roads, and streambeds in southern New England. J Wildl Manag 1:584–589CrossRefGoogle Scholar
  47. Gibbs JP (1998b) Distribution of woodland amphibians along a forest fragmentation gradient. Landsc Ecol 13(4):263–268CrossRefGoogle Scholar
  48. Giordano AR, Ridenhour BJ, Storfer A (2007) The influence of altitude and topography on genetic structure in the long-toed salamander (Ambystoma macrodactulym). Mol Ecol 16:1625–1637CrossRefPubMedGoogle Scholar
  49. González-Fernández A, Manjarrez J, García-Vázquez U, D’Addario M, Sunny A (2018) Present and future ecological niche modeling of garter snake species from the Trans-Mexican Volcanic Belt. Peer J 6:e4618CrossRefPubMedGoogle Scholar
  50. Greenwald KR, Gibbs HL, Waite AT (2009) Efficacy of land-cover models in predicting isolation of marbled salamander populations in a fragmented landscape. Conserv Biol 25:1232–1241CrossRefGoogle Scholar
  51. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. Syst Biol 59:307–321CrossRefPubMedGoogle Scholar
  52. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In: Nucleic acids symposium series (vol. 41, no. 41, pp 95–98) (London): Information Retrieval Ltd., c1979-c2000Google Scholar
  53. Hanski I, Gaggiotti OE (2004) Ecology, genetics, and evolution of metapopulations. Elsevier Academic Press, San DiegoGoogle Scholar
  54. Hedrick P (2005) Genetics of populations, 3rd edn. Jones and Bartlett Publishers, BurlingtonGoogle Scholar
  55. Hedrick P (2011) Genetics of populations, 4th edn. Jones and Bartlett Publishers, BurlingtonGoogle Scholar
  56. Heredia-Bobadilla RL, Monroy-Vilchis O, Zarco-González MM, Martínez-Gómez D, Mendoza-Martínez GD, Sunny A (2016) Genetic structure and diversity in an isolated population of an endemic mole salamander (Ambystoma rivulare Taylor, 1940) of central Mexico. Genetica 144:689–698CrossRefPubMedGoogle Scholar
  57. Heredia-Bobadilla RL, Monroy-Vilchis O, Zarco-González MM, Martínez-Gómez D, Mendoza-Martínez GD, Sunny A (2017) Genetic variability and structure of an isolated population of Ambystoma altamirani, a mole salamander that lives in the mountains of one of the largest urban areas in the world. J Genet 96:873–883CrossRefPubMedGoogle Scholar
  58. Herrera-Arroyo ML, Sork VL, González-Rodríguez A, Rocha-Ramírez V, Vega E, Oyama K (2013) Seed-mediated connectivity among fragmented populations of Quercus castanea (Fagaceae) in a Mexican landscape. Am J Bot 100:1663–1671CrossRefPubMedGoogle Scholar
  59. Hirner JLM, Cox SP (2007) Effects of rainbow trout (Oncorhynchus mykiss) on amphibians in productive recreational fishing lakes of British Columbia. Can J Fish Aquat Sci 64(12):1770–1780CrossRefGoogle Scholar
  60. Honnay O, Jacquemyn H (2007) Susceptibility of common and rare plant species to the genetic consequences of habitat fragmentation. Conserv Biol 21:823–831CrossRefPubMedGoogle Scholar
  61. Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Eco Resour 9:1322–1332CrossRefGoogle Scholar
  62. IUCN SSC Amphibian Specialist Group (2016) Pseudoeurycea robertsi. The IUCN red list of threatened species 2016: e.T59393A53983925. Accessed 03 May 2018
  63. Johansson M, Primmer CR, Merlia J (2006) History vs. current demography: explaining the genetic population structure of the common frog, Rana temporaria. Mol Ecol 15:975–983CrossRefPubMedGoogle Scholar
  64. Jost L (2008) GST and its relatives do not measure differentiation. Mol Ecol 17:4015–4026CrossRefPubMedGoogle Scholar
  65. Kalinowski S, Wagner AP, Taper ML (2006) ML-RELATE: a computer program for maximum likelihood estimation of relatedness and relationship. Mol Ecol Notes 6:576–579CrossRefGoogle Scholar
  66. Kamvar ZN, Tabima JF, Grünwald NJ (2014) Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2:e281CrossRefPubMedPubMedCentralGoogle Scholar
  67. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28(12):1647–1649CrossRefPubMedPubMedCentralGoogle Scholar
  68. Kleeberger SR, Werner JK (1982) Home range and homing behavior of Plethodon cinereus in northern Michigan. Copeia 409–415Google Scholar
  69. Lande R (1988) Genetics and demography in biological conservation. Science 241:1455–1460CrossRefPubMedGoogle Scholar
  70. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23(21):2947–2948CrossRefPubMedGoogle Scholar
  71. Leigh J, Bryant D, Steel M (2016) PopArt Version 1.7Google Scholar
  72. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25(11):1451–1452CrossRefPubMedGoogle Scholar
  73. Liebgold EB, Brodie ED, Cabe PR (2011) Female philopatry and male-biased dispersal in a direct-developing salamander, Plethodon cinereus. Mol Ecol 20(2):249–257CrossRefPubMedGoogle Scholar
  74. Lowe AJ, Boshier D, Ward M, Bacles CFE, Navarro C (2005) Genetic resource impacts of habitat loss and degradation; reconciling empirical evidence and predicted theory for Neotropical trees. Heredity 95:255–273CrossRefPubMedGoogle Scholar
  75. Lynch JF, Wake DB, Yang SY (1983) Genic and morphological differentiation in Mexican Pseudoeurycea (Caudata: Plethodontidae), with a description of a new species. Copeia 884–894Google Scholar
  76. Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220PubMedGoogle Scholar
  77. Marsh DM, Milam GS, Gorham NP, Beckman NG (2005) Forest roads as partial barriers to terrestrial salamander movement. Conserv Biol 19(6):2004–2008CrossRefGoogle Scholar
  78. Marvin GA (1998) Territorial behavior of the plethodontid salamander Plethodon kentucki: influence of habitat structure and population density. Oecologia 114(1):133–144CrossRefPubMedGoogle Scholar
  79. Mastretta-Yanes A, Quadri-Barba P, Escalante T, Arredondo-Amezcua L, Piñero D (2014) Propuesta de cambios a la zonificación y modificaciones al Programa de Manejo del APFF Nevado de Toluca tras reunión de discusión con CONANP en diciembre 2013. propuestas_a_conanp_nevadotoluca_enero2014.pdf
  80. Mastretta-Yanes A, Moreno-Letelier A, Piñero D, Jorgensen TH, Emerson BC (2015) Biodiversity in the Mexican highlands and the interaction of geology, geography and climate within the Trans-Mexican Volcanic Belt. J Biogeogr 42(9):1586–1600CrossRefGoogle Scholar
  81. Matschiner M, Salzburger W (2009) TANDEM: integrating automated allele binning into genetics and genomics workflows. Bioinformatics 25:1982–1983CrossRefPubMedGoogle Scholar
  82. Mendelson JR III, Lips KR, Gagliardo RW, Brodie ED (2006) Confronting amphibian declines and extinctions. Science 313:48CrossRefPubMedGoogle Scholar
  83. Moritz C (2002) Strategies to protect biological diversity and the evolutionary processes that sustain it. Syst Biol 51(2):238–254CrossRefPubMedGoogle Scholar
  84. Moritz C, Schneider CJ, Wake DB (1992) Evolutionary relationships within the Ensatina eschscholtzii complex confirm the ring species interpretation. Syst Biol 41(3):273–291CrossRefGoogle Scholar
  85. Myers EM, Zamudio KR (2004) Multiple paternity in an aggregate breeding amphibian: the effect of reproductive skew on estimates of male reproductive success. Mol Ecol 13(7):1951–1963CrossRefPubMedGoogle Scholar
  86. Nei M (1972) Genetic distance between populations. Am Nat 106:283–292CrossRefGoogle Scholar
  87. Nei M, Chesser RK (1983) Estimation of fixation indices and gene diversities. Ann Hum Genet 47:253–259CrossRefPubMedGoogle Scholar
  88. Newbold T, Hudson LN, Arnell AP, Contu S, De Palma A, Ferrier S (2016) Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science 353:288–291CrossRefPubMedGoogle Scholar
  89. Noël S, Ouellet M, Galois P, Lapointe FJ (2007) Impact of urban fragmentation on the genetic structure of the eastern red-backed salamander. Conserv Genet 8:599–606CrossRefGoogle Scholar
  90. Nowakowski AJ, Watling JI, Thompson ME, Brusch GA, Catenazzi A, Whitfield SM, Kurz DJ, Suárez-Mayorga A, Aponte-Gutiérrez A, Donnelly MA, Todd BD (2018) Thermal biology mediates responses of amphibians and reptiles to habitat modification. Ecol Lett 21:345–355CrossRefPubMedGoogle Scholar
  91. Ochoa-Ochoa L, Urbina-Cardona JN, Vázquez LB, Flores-Villela O, Bezaury-Creel J (2009) The effects of governmental protected areas and social initiatives for land protection on the conservation of Mexican amphibians. PLoS One 4(9):e6878CrossRefPubMedPubMedCentralGoogle Scholar
  92. Ordoñez-Ifarraguerri A, Siliceo-Cantero HH, Suazo-Ortuño I, Alvarado-Díaz J (2017) Does a frog change its diet along a successional forest gradient? The case of the shovel-nosed treefrog (Diaglena spatulata) in a tropical dry Forest in Western Mexico. J Herpetol 51(3):411–416CrossRefGoogle Scholar
  93. Ovaska K (1988) Spacing and movements of the salamander Plethodon vehiculum. Herpetologica 377–386Google Scholar
  94. Paradis E (2010) pegas: an R package for population genetics with an integrated-modular approach. Bioinformatics 26(3):419–420CrossRefPubMedGoogle Scholar
  95. Parra-Olea G (2002) Molecular phylogenetic relationships of neotropical salamanders of the genus Pseudoeurycea. Mol Phylogenet Evol 22(2):234–246CrossRefPubMedGoogle Scholar
  96. Parra-Olea G, Windfield JC, Velo-Antón G, Zamudio KR (2012a) Isolation in habitat refugia promotes rapid diversification in a montane tropical salamander. J Biogeogr 39(2):353–370CrossRefGoogle Scholar
  97. Parra-Olea G, Zamudio KR, Recuero E, Aguilar-Miguel X, Huacuz D, Zambrano L (2012b) Conservation genetics of threatened Mexican axolotls (Ambystoma). Anim Conserv 15:61–72CrossRefGoogle Scholar
  98. Parra-Olea G, Flores-Villela O, Mendoza-Almeralla C (2014) Biodiversidad de anfibios en México. Rev Mex Biodivers 85:460–466CrossRefGoogle Scholar
  99. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295CrossRefGoogle Scholar
  100. Pearson KJ, Goater CP (2009) Effects of predaceous and nonpredaceous introduced fish on the survival, growth, and antipredation behaviours of long-toed salamanders. Can J Zool 87(10):948–955CrossRefGoogle Scholar
  101. Percino-Daniel R, Recuero E, Vázquez-Domínguez E, Zamudio KR, Parra-Olea G (2016) All grown-up and nowhere to go: paedomorphosis and local adaptation in Ambystoma salamanders in the Cuenca Oriental of México. Biol J Linn Soc Lond 118:582–597CrossRefGoogle Scholar
  102. Petranka JW, Eldridge ME, Haley KE (1993) Effects of timber harvesting on southern Appalachian salamanders. Conserv Biol 7:363–377CrossRefGoogle Scholar
  103. Piry S, Luikart G, Cornuet JM (1999) BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. J Hered 90:502–503CrossRefGoogle Scholar
  104. Polich RL, Searcy CA, Shaffer E (2013) Effects of tail clipping on survivorship and growth of larval salamanders. J Wildl Manag 77:1420–1425CrossRefGoogle Scholar
  105. Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25(7):1253–1256CrossRefPubMedGoogle Scholar
  106. Posada D, Buckley TR (2004) Model selection and model averaging in phylogenetics: advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests. Syst Biol 53(5):793–808CrossRefPubMedGoogle Scholar
  107. Posada D, Crandall KA (2001) Selecting the best-fit model of nucleotide substitution. Syst Biol 50(4):580–601CrossRefPubMedGoogle Scholar
  108. Pritchard JK, Stephens M, Rosenberg NA, Donnelly P (2000) Association mapping in structured populations. Am J Hum Genet 67(1):170–181CrossRefPubMedPubMedCentralGoogle Scholar
  109. Purrenhage JL, Niewiarowski PH, Moore FBG (2009) Population structure of spotted salamanders (Ambystoma maculatum) in a fragmented landscape. Mol Ecol 18:235–247CrossRefPubMedGoogle Scholar
  110. Queller DC, Goodnight K (1989) Estimating relatedness using genetic markers. Evolution 43:258–275CrossRefPubMedGoogle Scholar
  111. R Development Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Accessed 1 May 2017
  112. Rambaut A, Drummond AJ (2009) Tracer version 1.5. right angle bracket. Accessed 18 May 2017
  113. Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conserv Biol 17:230–237CrossRefGoogle Scholar
  114. Rhoads EA (2011) Landscape genetics of the small-mouthed salamander (Ambystoma texanum) in a fragmented habitat: impacts of landscape change on breeding populations in Hardin County, Ohio forests. University of DaytonGoogle Scholar
  115. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19(12):1572–1574CrossRefPubMedGoogle Scholar
  116. Rovito SM, Parra-Olea G, Recuero E, Wake DB (2015) Diversification and biogeographical history of Neotropical plethodontid salamanders. Zool J Linnean Soc 175(1):167–188CrossRefGoogle Scholar
  117. Rueda-Zozaya P, Mendoza-Martínez GD, Martínez-Gómez D, Monroy-Vilchis O, Godoy JA, Sunny A, Palomares F, Chávez C, Herrera-Haro J (2016) Genetic variability and structure of jaguar (Panthera onca) in Mexican zoos. Genetica 144:59–69CrossRefPubMedGoogle Scholar
  118. Sarkar D, Sarkar MD, KernSmooth S (2017) Package ‘lattice’. Trellis Graphics for RGoogle Scholar
  119. Savage WK, Fremier AK, Shaffer HB (2010) Landscape genetics of alpine Sierra Nevada salamanders reveals extreme population subdivision in space and time. Mol Ecol 19:3301–3314CrossRefPubMedGoogle Scholar
  120. SEMARNAT (2010) Norma Oficial Mexicana NOM-059-SEMARNAT-2010, Protección ambiental-Especies nativas de México de flora y fauna silvestres-Categorías de riesgo y especificaciones para su inclusión, exclusión o cambio. Lista de especies en riesgo. Diario Oficial de la Federación, 10 diciembre 2010, MéxicoGoogle Scholar
  121. Semlitsch RD (2008) Differentiating migration and dispersal processes for pond-breeding amphibians. J Wildl Manag 72(1):260–267CrossRefGoogle Scholar
  122. Sodhi NS, Bickford D, Diesmos AC, Lee TM, Koh LP, Brook BW, Sekercioglu CH, Bradshaw CJA (2008) Measuring the meltdown: drivers of global amphibian extinction and decline. PLoS One 3:e1636CrossRefPubMedPubMedCentralGoogle Scholar
  123. Spear S, Storfer A (2010) Anthropogenic and natural disturbance lead to differing patterns of gene flow in the Rocky Mountain tailed frog, Ascaphus montanus. Biol Conserv 143:778–786CrossRefGoogle Scholar
  124. Stiven AE, Bruce RC (1988) Ecological genetics of the salamander Desmognathus guadramaculatus from disturbed watersheds in the Southern Appalachian biosphere reserve cluster. Conserv Biol 2(2):194–205CrossRefGoogle Scholar
  125. Strimmer K (2008) fdrtool: a versatile R package for estimating local and tail area-based false discovery rates. Bioinformatics 24(12):1461–1462CrossRefPubMedGoogle Scholar
  126. Stuart SN, Chanson JS, Cox NA, Young BE, Rodrigues ASL, Fischman DL, Waller RW (2004) Status and trends of amphibian declines and extinctions worldwide. Science 306:1783–1786CrossRefPubMedGoogle Scholar
  127. Suislepp K, Rannap R, Lõhmus A (2011) Impacts of artificial drainage on amphibian breeding sites in hemiboreal forests. For Ecol Manag 262(6):1078–1083CrossRefGoogle Scholar
  128. Sunny A, Monroy-Vilchis O, Fajardo V, Aguilera-Reyes U (2014a) Genetic diversity and structure of an endemic and critically endangered stream river salamander (Caudata: Ambystoma leorae) in Mexico. Conserv Genet 15:49–59CrossRefGoogle Scholar
  129. Sunny A, Monroy-Vilchis O, Reyna-Valencia C, Zarco-González MM (2014b) Microhabitat types promote the genetic structure of a micro-endemic and critically endangered mole salamander (Ambystoma leorae) of Central Mexico. PLoS One 9(7):e103595CrossRefPubMedPubMedCentralGoogle Scholar
  130. Sunny A, Monroy-Vilchis O, Zarco-González MM, Mendoza-Martínez GD, Martínez-Gómez D (2015) Genetic diversity and genetic structure of an endemic Mexican Dusky Rattlesnake (Crotalus triseriatus) in a highly modified agricultural landscape: implications for conservation. Genetica 143:705–716CrossRefPubMedGoogle Scholar
  131. Sunny A, González-Fernández A, D’Addario M (2017) Potential distribution of the endemic imbricate alligator lizard (Barisia imbricata imbricata) in highlands of central Mexico. Amphib Reptil 38(2):225–231CrossRefGoogle Scholar
  132. Sunny A, Monroy-Vilchis O, Zarco-González MM (2018) Genetic diversity and structure of Crotalus triseriatus, a rattlesnake of central Mexico. J Genet 97(5):1119–1130CrossRefPubMedGoogle Scholar
  133. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123(3):585–595PubMedPubMedCentralGoogle Scholar
  134. Templeton AR, Shaw K, Routman E, Davies SK (1990) The genetic consequences of habitat fragmentation. Ann Mo Bot Gard 77:13–27CrossRefGoogle Scholar
  135. Tennessen JA, Zamudio KR (2003) Early male reproductive advantage multiple paternity and sperm storage in an amphibian aggregate breeder. Mol Ecol 12:1567–1576CrossRefPubMedGoogle Scholar
  136. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25(24):4876–4882CrossRefPubMedPubMedCentralGoogle Scholar
  137. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538CrossRefGoogle Scholar
  138. Van Rooij P, Martel A, Nerz J, Voitel S, Van Immerseel F, Haesebrouck F, Pasmans F (2011) Detection of Batrachochytrium dendrobatidis in Mexican bolitoglossine salamanders using an optimal sampling protocol. EcoHealth 8(2):237–243CrossRefPubMedGoogle Scholar
  139. Vázquez-Domínguez E, Surárez-Atilano M, Booth W, González-Baca C, Cuarón AD (2012) Genetic evidence of a recent successful colonization of introduced species on islands: Boa constrictor imperator on Cozumel Island. Biol Invasions 14:2101–2116CrossRefGoogle Scholar
  140. Vega R, Vázquez-Domínguez E, Mejía-Puente A, Cuarón AD (2007) Unexpected high levels of genetic variability and the population structure of an island endemic rodent (Oryzomys couesi cozumelae). Biol Conserv 137:210–222CrossRefGoogle Scholar
  141. Velo-Antón G, Windfield JC, Zamudio K, Parra-Olea G (2009) Microsatellite markers for Pseudoeurycea leprosa, a plethodontid salamander endemic to the Transmexican Neovolcanic Belt. Conserv Genet Resour 1(1):5CrossRefGoogle Scholar
  142. Velo-Antón G, Parra JL, Parra-Olea G, Zamudio KR (2013) Tracking climate change in a dispersal-limited species: reduced spatial and genetic connectivity in a montane salamander. Mol Ecol 22(12):3261–3278CrossRefPubMedGoogle Scholar
  143. Vucetich JA, Waite TA (2000) Is one migrant per generation sufficient for the genetic management of fluctuating populations? Anim Conserv 3(3):261–266CrossRefGoogle Scholar
  144. Wake DB. Vredenburg VT (2008) Are we in the midst of the sixth mass extinction? A view from the world of amphibians. Proc Natl Acad Sci USA 105:11466–11473CrossRefPubMedGoogle Scholar
  145. Wang IJ (2009) Fine-scale population structure in a desert amphibian: landscape genetics of the black toad (Bufo exsul). Mol Ecol 18:3847–3856CrossRefPubMedGoogle Scholar
  146. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370PubMedGoogle Scholar
  147. Welsh HH, Droege S (2001) A case for using plethodontid salamanders for monitoring biodiversity and ecosystem integrity of North American forests. Conserv Biol 15(3):558–569CrossRefGoogle Scholar
  148. Wilson LD, Johnson JD, Mata-Silva V (2013) A conservation reassessment of the amphibians of Mexico based on the EVS measure. Amphib Reptile Conserv 7:97–127Google Scholar
  149. Windfield-Pérez JC (2008) Filogeografía de Pseudoeurycea leprosa (Caudata: Plethodontidae) empleando ADN mitocondrial (Citocromo B). Master Thesis, Universidad Nacional Autónoma de México. Posgrado en Ciencias Biológicas. Instituto de Biología. Accessed 11 11 2017
  150. With KA (1997) The application of neutral landscape models in conservation biology. Conser Biol 11:1069–1080CrossRefGoogle Scholar
  151. Young A, Boyle T, Brown T (1996) The population genetic consequences of habitat fragmentation for plants. Trends Ecol Evol 11:413–418CrossRefPubMedGoogle Scholar
  152. Zamudio KR, Wieczorek AM (2007) Fine-scale spatial genetic structure and dispersal among spotted salamander (Ambystoma maculatum) breeding populations. Mol Ecol 16:257–274CrossRefPubMedGoogle Scholar
  153. Zeng K, Fu YX, Shi S, Wu CI (2006) Statistical tests for detecting positive selection by utilizing high-frequency variants. Genetics 174(3):1431–1439CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Armando Sunny
    • 1
    Email author
  • Luis Duarte-deJesus
    • 1
  • Arlene Aguilera-Hernández
    • 1
  • Fabiola Ramírez-Corona
    • 2
  • Marco Suárez-Atilano
    • 3
  • Ruth Percino-Daniel
    • 3
  • Javier Manjarrez
    • 4
  • Octavio Monroy-Vilchis
    • 1
  • Andrea González-Fernández
    • 4
  1. 1.Centro de Investigación en Ciencias Biológicas AplicadasUniversidad Autónoma del Estado de MéxicoTolucaMexico
  2. 2.Taller de Sistemática y Biogeografía, Departamento de Biología Evolutiva, Facultad de CienciasUniversidad Nacional Autónoma de MéxicoMexico CityMexico
  3. 3.Departamento de Ecología de la Biodiversidad, Instituto de EcologíaUniversidad Nacional Autónoma de MéxicoMexico CityMexico
  4. 4.Laboratorio de Biología Evolutiva, Facultad de CienciasUniversidad Autónoma del Estado de MéxicoTolucaMexico

Personalised recommendations