pp 1–8 | Cite as

Adaptive evolution of the ACSL gene family in Carnivora

  • Chao Zhao
  • Guangshuai Liu
  • Shuai Shang
  • Qinguo Wei
  • Lei Zhang
  • Tian Xia
  • Xiufeng Yang
  • Guolei Sun
  • Honghai ZhangEmail author
Original Paper


Carnivores exhibit various fat contents and energy reserves to adapt to their environments. However, the molecular mechanisms underlying lipid metabolic differences among carnivores have not been well explored. Long-chain acyl-CoA synthetases (ACSLs) catalyze the initial step in lipid metabolism by activating fatty acids (FAs), and they drive acyl-CoAs toward anabolic lipid synthesis or catabolic β-oxidation. We identified the sequences of the genes of the ACSL family (ACSL1, ACSL3, ACSL4, ACSL5 and ACSL6) in the sable (Martes zibellina) via transcriptome sequencing. The ACSL gene sequences of 13 other carnivores were obtained from NCBI. Phylogenetic results showed that unlike the widely accepted carnivore phylogeny, Canidae and Felidae tend to group together based on ACSL4 and ACSL6. The evolutionary analyses identified a series of positively selected amino acid residues in ACSL1, ACSL4 and ACSL5. Two radical amino acid substitutions detected in sable suggested potential insights into the molecular mechanism underlying the relatively low fat content in this animal. This is the first study to investigate the molecular mechanisms underlying the adaptive evolution of fat metabolism in carnivores. Overall, the ACSL genes were under different evolutionary forces in carnivores, and some genes have undergone adaptive evolution in lipid metabolism.


Carnivora ACSL Lipid metabolism Adaptive evolution 



This work was supported by Special Fund for Forest Scientific Research in the Public Welfare (201404420), National Natural Science Fund of China (31372220, 31672313).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

10709_2019_57_MOESM1_ESM.doc (44 kb)
Additional file S1. Table S1 Accession numbers and sources of the retrieved ACSL sequences for the species included in this study (DOC 143 KB)
10709_2019_57_MOESM2_ESM.fas (144 kb)
Supplementary material 2 (FAS 43 KB)
10709_2019_57_MOESM3_ESM.jpg (115 kb)
Supplementary material 2 (JPG 114 KB)
10709_2019_57_MOESM4_ESM.jpg (116 kb)
Supplementary material 4 (JPG 116 KB)
10709_2019_57_MOESM5_ESM.jpg (114 kb)
Supplementary material 5 (JPG 113 KB)
10709_2019_57_MOESM6_ESM.jpg (118 kb)
Supplementary material 6 (JPG 118 KB)
10709_2019_57_MOESM7_ESM.jpg (113 kb)
Supplementary material 7 (JPG 113 KB)
10709_2019_57_MOESM8_ESM.xls (31 kb)
Additional file S8. Table S2 Positive selection at amino acid sites of carnivores ACSL genes (XLS 31 KB)
10709_2019_57_MOESM9_ESM.xls (49 kb)
Additional file S9. Table S3 Likelihood ratio tests of branch-site models for the ACSL genes (XLS 49 KB)
10709_2019_57_MOESM10_ESM.xls (42 kb)
Additional file S10. Table S4 Likelihood ratio tests of branch models for the ACSL genes (XLS 42 KB)
10709_2019_57_MOESM11_ESM.png (224 kb)
Additional file S11. Spatial distribution of positively selected sites in the three-dimensional (3D) structure of ACSL1 (PNG 224 KB)


  1. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402CrossRefGoogle Scholar
  2. Berta A (2002) Pinnipedia, overview. Academic Press, San Diego, pp 903–911Google Scholar
  3. Bowman TA, O’Keeffe KR, D’Aquila T, Yan QW, Griffin JD, Killion EA, Salter DM, Mashek DG, Buhman KK, Greenberg AS (2016) Acyl CoA synthetase 5 (ACSL5) ablation in mice increases energy expenditure and insulin sensitivity and delays fat absorption. Mol Metab 5:210–220. CrossRefGoogle Scholar
  4. Bu SY, Mashek DG (2010) Hepatic long-chain acyl-CoA synthetase 5 mediates fatty acid channeling between anabolic and catabolic pathways. J Lipid Res 51:3270–3280. CrossRefGoogle Scholar
  5. Bu SY, Mashek MT, Mashek DG (2009) Suppression of long chain acyl-CoA synthetase 3 decreases hepatic de novo fatty acid synthesis through decreased transcriptional activity. J Biol Chem 284:30474–30483. CrossRefGoogle Scholar
  6. Budge SM, Cooper MH, Iverson SJ (2004) Demonstration of the deposition and modification of dietary fatty acids in pinniped blubber using radiolabelled precursors. PBZ 77:682–687. Google Scholar
  7. Corominas J, Ramayo-Caldas Y, Castello A, Munoz M, Ibanez-Escriche N, Folch JM, Ballester M (2012) Evaluation of the porcine ACSL4 gene as a candidate gene for meat quality traits in pigs. Anim Genet 43:714–720. CrossRefGoogle Scholar
  8. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. CrossRefGoogle Scholar
  9. Eisenberg JF (1989) An introduction to the Carnivora. In: Gittleman JL (ed) Carnivore behavior, ecology, and evolution. Cornel Univ. Press, IthacaGoogle Scholar
  10. Ellis JM, Li LO, Wu PC, Koves TR, Ilkayeva O, Stevens RD, Watkins SM, Muoio DM, Coleman RA (2010) Adipose Acyl-CoA synthetase-1 directs fatty acids toward beta-oxidation and is required for cold thermogenesis. Cell Metab 12:53–64. CrossRefGoogle Scholar
  11. Ellis JM, Mentock SM, Depetrillo MA, Koves TR, Sen S, Watkins SM, Muoio DM, Cline GW, Taegtmeyer H, Shulman GI, Willis MS, Coleman RA (2011) Mouse cardiac acyl coenzyme a synthetase 1 deficiency impairs Fatty Acid oxidation and induces cardiac hypertrophy. Mol Cell Biol 31:1252–1262. CrossRefGoogle Scholar
  12. Flynn JJ, Finarelli JA, Zehr S, Hsu J, Nedbal MA (2005) Molecular phylogeny of the carnivora (mammalia): assessing the impact of increased sampling on resolving enigmatic relationships. Syst Biol 54:317–337. CrossRefGoogle Scholar
  13. Fujino T, Kang MJ, Suzuki H, Iijima H, Yamamoto T (1996) Molecular characterization and expression of rat acyl-CoA synthetase 3. J Biol Chem 271:16748–16752CrossRefGoogle Scholar
  14. Glick BS, Rothman JE (1987) Possible role for fatty acyl-coenzyme A in intracellular protein transport. Nature 326:309–312. CrossRefGoogle Scholar
  15. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652. CrossRefGoogle Scholar
  16. Harlow HJ (1994) Trade-offs associated with the size and shape of American martens. Cornell University Press, IthacaGoogle Scholar
  17. Kang MJ, Fujino T, Sasano H, Minekura H, Yabuki N, Nagura H, Iijima H, Yamamoto TT (1997) A novel arachidonate-preferring acyl-CoA synthetase is present in steroidogenic cells of the rat adrenal, ovary, and testis. Proc Natl Acad Sci 94:2880–2884CrossRefGoogle Scholar
  18. Keane TM, Creevey CJ, Pentony MM, Naughton TJ, Mclnerney JO (2006) Assessment of methods for amino acid matrix selection and their use on empirical data shows that ad hoc assumptions for choice of matrix are not justified. BMC Evol Biol 6:29CrossRefGoogle Scholar
  19. Knutsen L, Born EW (1994) Body growth in atlantic walrus (Odobenus rosmarus rosmams) from greenland. J Zool 234:371–385CrossRefGoogle Scholar
  20. Li LO, Klett EL, Coleman RA (2010) Acyl-CoA synthesis, lipid metabolism and lipotoxicity. Biochim Biophys Acta 1801:246–251. CrossRefGoogle Scholar
  21. Li LO, Grevengoed TJ, Paul DS, Ilkayeva O, Koves TR, Pascual F, Newgard CB, Muoio DM, Coleman RA (2015) Compartmentalized acyl-CoA metabolism in skeletal muscle regulates systemic glucose homeostasis. Diabetes 64:23–35. CrossRefGoogle Scholar
  22. Lopes-Marques M, Cunha I, Reis-Henriques MA, Santos MM, Castro LF (2013) Diversity and history of the long-chain acyl-CoA synthetase (Acsl) gene family in vertebrates. BMC Evolut Biol 13:271. CrossRefGoogle Scholar
  23. Manichaikul A, Wang XQ, Zhao W, Wojczynski MK, Siebenthall K, Stamatoyannopoulos JA, Saleheen D, Borecki IB, Reilly MP, Rich SS, Bornfeldt KE (2016) Genetic association of long-chain acyl-CoA synthetase 1 variants with fasting glucose, diabetes, and subclinical atherosclerosis. J Lipid Res 57:433–442. CrossRefGoogle Scholar
  24. Mashek DG, Bornfeldt KE, Coleman RA, Berger J, Bernlohr DA, Black P, DiRusso CC, Farber SA, Guo W, Hashimoto N, Khodiyar V, Kuypers FA, Maltais LJ, Nebert DW, Renieri A, Schaffer JE, Stahl A, Watkins PA, Vasiliou V, Yamamoto TT (2004) Revised nomenclature for the mammalian long-chain acyl-CoA synthetase gene family. J Lipid Res 45:1958–1961. CrossRefGoogle Scholar
  25. Mashek DG, Li LO, Coleman RA (2006) Rat long-chain acyl-CoA synthetase mRNA, protein, and activity vary in tissue distribution and in response to diet. J Lipid Res 47:2004–2010. CrossRefGoogle Scholar
  26. Miller W, Schuster SC, Welch AJ, Ratan A, Bedoya-Reina OC, Zhao F, Kim HL, Burhans RC, Drautz DI, Wittekindt NE, Tomsho LP, Ibarra-Laclette E, Herrera-Estrella L, Peacock E, Farley S, Sage GK, Rode K, Obbard M, Montiel R, Bachmann L, Ingolfsson O, Aars J, Mailund T, Wiig O, Talbot SL, Lindqvist C (2012) Polar and brown bear genomes reveal ancient admixture and demographic footprints of past climate change. Proc Natl Acad Sci USA 109:E2382–E2390. CrossRefGoogle Scholar
  27. Monakhov VG (2011) Martes zibellina (Carnivora: Mustelidae). Mammal Species 43:75–86CrossRefGoogle Scholar
  28. Mustonen AM, Puukka M, Saarela S, Paakkonen T, Aho J, Nieminen P (2006) Adaptations to fasting in a terrestrial mustelid, the sable (Martes zibellina). Comparative biochemistry and physiology. Part A. Mol Integr Physiol 144:444–450. CrossRefGoogle Scholar
  29. Nieminen P, Rouvinen-Watt K, Collinsb D, Grant J, Mustonen AM (2006) Fatty acid profiles and relative mobilization during fasting in adipose tissue depots of the American marten (Martes americana). Lipids 41:231–240CrossRefGoogle Scholar
  30. Nieminen P, Rouvinen-Watt K, Saarela S, Mustonen AM (2007) Fasting in the American marten (Martes americana): a physiological model of the adaptations of a lean-bodied animal. J Compar Physiol B Biochem Syst Environ Physiol 177:787–795. CrossRefGoogle Scholar
  31. Nowark R (1999) Walker’s mammals of the world. Johns Hopkins Univ. Press, Baltimore, pp 632–793Google Scholar
  32. Ohta T (1992) The nearly neutral theory of molecular evolution. Ann Rev Ecol Syst 23:263–286CrossRefGoogle Scholar
  33. Oikawa E, Iijima H, Suzuki T, Sasano H, Sato H, Kamataki A, Nagura H, Kang MJ, Fujino T, Suzuki H, Yamamoto TT (1998) A novel acyl-CoA synthetase, ACS5, expressed in intestinal epithelial cells and proliferating preadipocytes. J Biochem 124:679–685CrossRefGoogle Scholar
  34. Phillips CM, Goumidi L, Bertrais S, Field MR, Cupples LA, Ordovas JM, Defoort C, Lovegrove JA, Drevon CA, Gibney MJ, Blaak EE, Kiec-Wilk B, Karlstrom B, Lopez-Miranda J, McManus R, Hercberg S, Lairon D, Planells R, Roche HM (2010) Gene-nutrient interactions with dietary fat modulate the association between genetic variation of the ACSL1 gene and metabolic syndrome. J Lipid Res 51:1793–1800. CrossRefGoogle Scholar
  35. Pond CM (1978) Morphological aspects and the ecological and mechanical consequences of fat deposition in wild vertebrates. Annu Rev Ecol Evol Syst 9:519–570CrossRefGoogle Scholar
  36. Pond SL, Frost SD (2005) Datamonkey: rapid detection of selective pressure on individual sites of codon alignments. Bioinformatics 21:2531–2533. CrossRefGoogle Scholar
  37. Pond SL, Frost SD, Muse SV (2005) HyPhy: hypothesis testing using phylogenies. Bioinformatics 21:676–679. CrossRefGoogle Scholar
  38. Rajkumar A, Lamothe G, Bolongo P, Harper ME, Adamo K, Doucet E, Rabasa-Lhoret R, Prud’homme D, Tesson F (2016) Acyl-CoA synthetase long-chain 5 genotype is associated with body composition changes in response to lifestyle interventions in postmenopausal women with overweight and obesity: a genetic association study on cohorts Montreal-Ottawa New Emerging Team, and Complications Associated with Obesity. BMC Med Genet 17:56. CrossRefGoogle Scholar
  39. Rubinow KB, Wall VZ, Nelson J, Mar D, Bomsztyk K, Askari B, Lai MA, Smith KD, Han MS, Vivekanandan-Giri A, Pennathur S, Albert CJ, Ford DA, Davis RJ, Bornfeldt KE (2013) Acyl-CoA synthetase 1 is induced by gram-negative bacteria and lipopolysaccharide and is required for phospholipid turnover in stimulated macrophages. J Biol Chem 288:9957–9970. CrossRefGoogle Scholar
  40. Rusc A, Sieczkowska H, Krzecio E, Antosik K, Zybert A, Kocwin-Podsiadla M, Kaminski S (2011) The association between acyl-CoA synthetase (ACSL4) polymorphism and intramuscular fat content in (Landrace x Yorkshire) x Duroc pigs. Meat Sci 89:440–443. CrossRefGoogle Scholar
  41. Schneiter R, Kohlwein SD (1997) Organelle structure, function, and inheritance in yeast: a role for fatty acid synthesis? Cell 88:431–434CrossRefGoogle Scholar
  42. Senkal CE, Salama MF, Snider AJ, Allopenna JJ, Rana NA, Koller A, Hannun YA, Obeid LM (2017) Ceramide is metabolized to acylceramide and stored in lipid droplets. Cell Metab 25:686–697. CrossRefGoogle Scholar
  43. Shero MR, Costa DP, Burns JM (2015) Scaling matters: incorporating body composition into Weddell seal seasonal oxygen store comparisons reveals maintenance of aerobic capacities. J Compar Physiol B Biochem Syst Environ Physiol 185:811–824. CrossRefGoogle Scholar
  44. Soupene E, Kuypers FA (2008) Mammalian long-chain acyl-CoA synthetases. Exp Biol Med 233:507–521. CrossRefGoogle Scholar
  45. Suzuki H, Kawarabayasi Y, Kondo J, Abe T, Nishikawa K, Kimura S, Hashimoto T, Yamamoto T (1990) Structure and regulation of rat long-chain acyl-CoA synthetase. J Biol Chem 265:8681–8685Google Scholar
  46. Suzuki H, Watanabe M, Fujino T, Yamamoto T (1995) Multiple promoters in rat acyl-CoA synthetase gene mediate differential expression of multiple transcripts with 5′-end heterogeneity. J Biol Chem 270:9676–9682CrossRefGoogle Scholar
  47. Teng AC, Adamo K, Tesson F, Stewart AF (2009) Functional characterization of a promoter polymorphism that drives ACSL5 gene expression in skeletal muscle and associates with diet-induced weight loss. FASEB J 23:1705–1709. CrossRefGoogle Scholar
  48. Teodoro BG, Sampaio IH, Bomfim LH, Queiroz AL, Silveira LR, Souza AO, Fernandes AM, Eberlin MN, Huang TY, Zheng D, Neufer PD, Cortright RN, Alberici LC (2017) Long-chain acyl-CoA synthetase 6 regulates lipid synthesis and mitochondrial oxidative capacity in human and rat skeletal muscle. J Physiol 595:677–693. CrossRefGoogle Scholar
  49. Thometz NM, Tinker MT, Staedler MM, Mayer KA, Williams TM (2014) Energetic demands of immature sea otters from birth to weaning: implications for maternal costs, reproductive behavior and population-level trends. J Exp Biol 217:2053–2061. CrossRefGoogle Scholar
  50. Van Horn CG, Caviglia JM, Li LO, Wang S, Granger DA, Coleman RA (2005) Characterization of recombinant long-chain rat acyl-CoA synthetase isoforms 3 and 6: identification of a novel variant of isoform 6. Biochemistry 44:1635–1642. CrossRefGoogle Scholar
  51. Wang Z, Chen Z, Xu S, Ren W, Zhou K, Yang G (2015) ‘Obesity’ is healthy for cetaceans? Evidence from pervasive positive selection in genes related to triacylglycerol metabolism. Sci Rep 5:14187. CrossRefGoogle Scholar
  52. Watkins PA, Maiguel D, Jia Z, Pevsner J (2007) Evidence for 26 distinct acyl-coenzyme A synthetase genes in the human genome. J Lipid Res 48:2736–2750. CrossRefGoogle Scholar
  53. Wu M, Cao A, Dong B, Liu J (2011) Reduction of serum free fatty acids and triglycerides by liver-targeted expression of long chain acyl-CoA synthetase 3. Int J Mol Med 27:655–662. CrossRefGoogle Scholar
  54. Wyss AR, Flynn JJ (1993) A phylogenetic analysis and defnition of the Carnivora. In: Szalay FS, Novacek M, McKenna M (eds) Springer, New York, pp 32–52Google Scholar
  55. Yampolsky LY, Stoltzfus A (2005) The exchangeability of amino acids in proteins. Genetics 170:1459–1472. CrossRefGoogle Scholar
  56. Yang ZH (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24:1586–1591. CrossRefGoogle Scholar
  57. Yu L, Luan PT, Jin W, Ryder OA, Chemnick LG, Davis HA, Zhang YP (2011) Phylogenetic utility of nuclear introns in interfamilial relationships of Caniformia (order Carnivora). Syst Biol 60:175–187. CrossRefGoogle Scholar
  58. Zhang Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bionf 9:40CrossRefGoogle Scholar
  59. Zhang J, Nei M (1997) Accuracies of ancestral amino acid sequences inferred by the parsimony, likelihood, and distance methods. J Mol Evol 44(Suppl 1):S139–S146CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Chao Zhao
    • 1
  • Guangshuai Liu
    • 1
  • Shuai Shang
    • 2
  • Qinguo Wei
    • 1
  • Lei Zhang
    • 1
  • Tian Xia
    • 1
  • Xiufeng Yang
    • 1
  • Guolei Sun
    • 1
  • Honghai Zhang
    • 1
    Email author
  1. 1.College of Life ScienceQufu Normal UniversityQufuPeople’s Republic of China
  2. 2.College of Marine Life SciencesOcean University of ChinaQingdaoPeople’s Republic of China

Personalised recommendations