Advertisement

Genetica

pp 1–12 | Cite as

Species delimitation and genetic structure of two endemic Magnolia species (section Magnolia; Magnoliaceae) in Mexico

  • Yessica RicoEmail author
  • Bruno Alejandro Gutiérrez Becerril
Original Paper
  • 77 Downloads

Abstract

Magnolias are characteristic tree species of the Tropical Montane Cloud Forest (TMCF) in Mexico, an ecosystem that is highly threatened by habitat fragmentation and climate change. In this study, based on DNA sequences from five regions (chloroplast: trnT-trnL, trnK5-matK, trnS-trnG, rpl32-trnL, nuclear: ITS) and seven nuclear microsatellite markers, we aimed to delineate species boundaries between two-endemic species of the TMCF, Magnolia pedrazae and Magnolia schiedeana, and to estimate levels of genetic structure and diversity among populations. Phylogenetic and haplotype network analyses for the chloroplast and ITS regions did not support genetic differentiation as two distinctive species. Results from Bayesian and multivariate cluster analyses based on microsatellite loci showed high genetic differentiation across most populations, which was consistent with a strong and significant pattern of isolation by geographical distance. We found moderate to high levels of population genetic diversity, but it was lower in small populations relative to large populations. Our results suggest a contemporary decrease of genetic connectivity among populations, likely as a consequence of the current decline of suitable TMCF habitat. Managing landscape connectivity among remnant Magnolia populations within protected natural parks and surroundings, and with emphasis of small populations, would be key for the species conservation.

Keywords

Conservation genetics Genetic structure and diversity Microsatellites ITS sequences Chloroplast DNA sequences 

Notes

Acknowledgements

We thank Jose Antonio Vázquez García and Miguel Ángel Muñiz Castro for providing location information of M. pedrazae sites in Querétaro. We are especially grateful with Roberto Pedraza from the Grupo Ecológico Sierra Gorda for the authorization and guidance to sample in JH and YE. Likewise, to Pedro and Maximino Cruz Ponce and Rosalío Garay Galván from the community of La Trinidad and Coronel Castillo in San Luis Potosí for their authorization and guidance to sample leaves in FO, SI, and CS. We thank Sergio Zamudio, Brenda Bedolla, María Magdalena Salinas Rodríguez, and Hugo Castillo Gómez for their assistance in sampling collection, Cristina Barcenas for her assistance in the optimization of microsatellite markers and Maria Luisa Herrera Arroyo for processing a subset of DNA extractions.

Supplementary material

10709_2019_52_MOESM1_ESM.kml (40 kb)
Supplementary material 1 (KML 39 KB)
10709_2019_52_MOESM2_ESM.pdf (515 kb)
Supplementary material 2 (PDF 514 KB)
10709_2019_52_MOESM3_ESM.pdf (520 kb)
Supplementary material 3 (PDF 520 KB)
10709_2019_52_MOESM4_ESM.pdf (423 kb)
Supplementary material 4 (PDF 423 KB)

References

  1. Aguilar R, Quesada M, Ashworth L et al (2008) Genetic consequences of habitat fragmentation in plant populations: susceptible signals in plant traits and methodological approaches. Mol Ecol 17:5177–5188.  https://doi.org/10.1111/j.1365-294X.2008.03971.x CrossRefGoogle Scholar
  2. Auffret AG, Rico Y, Bullock JM et al (2017) Plant functional connectivity—integrating landscape structure and effective dispersal. J Ecol.  https://doi.org/10.1111/1365-2745.12742 Google Scholar
  3. Azuma H, García-Franco JG, Rico-Gray V, Thien LB (2001) Molecular phylogeny of the Magnoliaceae: the biogeography of tropical and temperate disjunctions. Am J Bot 88:2275–2285.  https://doi.org/10.2307/3558389 CrossRefGoogle Scholar
  4. Azuma H, Figlar RB, Del Tredici P et al (2011) Intraspecific sequence variation of cpDNA shows two distinct groups within Magnolia virginiana L. of Eastern North America and Cuba. Castanea 76:118–123CrossRefGoogle Scholar
  5. Budd C, Zimmer E, Freeland JR (2015) Conservation genetics of Magnolia acuminata, an endangered species in Canada: can genetic diversity be maintained in fragmented, peripheral populations? Conserv Genet.  https://doi.org/10.1007/s10592-015-0746-9 Google Scholar
  6. Caye K, Deist TM, Martins H et al (2016) TESS3: fast inference of spatial population structure and genome scans for selection. Mol Ecol Resour 16:540–548.  https://doi.org/10.1111/1755-0998.12471 CrossRefGoogle Scholar
  7. Cires E, Smet Y, De Cuesta C, Goetghebeur P (2013) Gap analyses to support ex situ conservation of genetic diversity in Magnolia, a flagship group. Biodivers Conserv 22:567–590.  https://doi.org/10.1007/s10531-013-0450-3 CrossRefGoogle Scholar
  8. CONABIO (2010) El bosque mesófilo de montaña en México: amenazas y oportunidades para su conservación y manejo sostenible. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, México Distrito Federal, MexicoGoogle Scholar
  9. Cruz-Durán R, Vega-Flores K, Jiménez-Ramírez J (2008) Magnolia Vazquezii (Magnoliaceae), una especie nueva del estado de Guerrero, Mexico. Novon: J Bot Nomencl 18:21–24.  https://doi.org/10.3417/2005096 CrossRefGoogle Scholar
  10. Cué-Bar E, Villaseñor JL, Arrendondo-Amezcua L et al (2006) La flora arbórea de Michoacán, México. Bot Sci 78:47–81Google Scholar
  11. Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772.  https://doi.org/10.1038/nmeth.210 CrossRefGoogle Scholar
  12. Díaz-Cárdenas B, Ruiz-Sanchez E, Castro-Felix P, Castañeda-Gaytán G, Ruiz-Santana S, Gadsden H (2017) Species delimitation of the blue-spotted spiny lizard within a multilocus, multispecies coalescent framework, results in the recognition of a new Sceloporus species. Mol Phylogenetics Evol 111:185–195.  https://doi.org/10.1016/j.ympev.2017.04.004 CrossRefGoogle Scholar
  13. Dieringer G, Espinosa SJE (1994) Reproductive ecology of Magnolia schiedeana (Magnoliaceae) a threatened cloud forest tree species in Veracruz, Mexico. Bull Torrey Bot Club 121:154–159CrossRefGoogle Scholar
  14. DiLeo MF, Rico Y, Boehmer HJ, Wagner HH (2017) An ecological connectivity network maintains genetic diversity of a flagship wildflower, Pulsatilla vulgaris. Biol Conserv.  https://doi.org/10.1016/j.biocon.2017.05.026 Google Scholar
  15. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15Google Scholar
  16. Earl DA, vonHoldt BM (2012) Structure harvester: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361.  https://doi.org/10.1007/s12686-011-9548-7 CrossRefGoogle Scholar
  17. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797.  https://doi.org/10.1093/nar/gkh340 CrossRefGoogle Scholar
  18. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620.  https://doi.org/10.1111/j.1365-294X.2005.02553.x CrossRefGoogle Scholar
  19. Excoffier L, Lischer H (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567.  https://doi.org/10.1111/j.1755-0998.2010.02847.x CrossRefGoogle Scholar
  20. Farwig N, Braun C, Böhning-Gaese K (2008) Human disturbance reduces genetic diversity of an endangered tropical tree, Prunus africana (Rosaceae). Conserv Genet 9:317–326.  https://doi.org/10.1007/s10592-007-9343-x CrossRefGoogle Scholar
  21. Frankham R (2005) Genetics and extinction. Biol Conserv 126:131–140.  https://doi.org/10.1016/j.biocon.2005.05.002 CrossRefGoogle Scholar
  22. Fuchs EJ, Hamrick JL (2010) Spatial genetic structure within size classes of the endangered tropical tree Guaiacum sanctum (Zygophyllaceae). Am J Bot 97:1200–1207.  https://doi.org/10.3732/ajb.0900377 CrossRefGoogle Scholar
  23. García D, Chacoff NP (2007) Scale-dependent effects of habitat fragmentation on hawthorn pollination, frugivory, and seed predation. Conserv Biol 21:400–411.  https://doi.org/10.1111/j.1523-1739.2006.00593.x CrossRefGoogle Scholar
  24. González-Espinosa M, Meave JA, Lorea-Hernández FG, Ibarra-Manriquez G, Newton AC (2011) The red list of Mexican Cloud Forest trees. Fauna andFlora International, CambridgeGoogle Scholar
  25. Gottsberger G, Silberbauer-Gottsberger I, Seymour RS, Dötterl S (2012) Pollination ecology of ovata may explain the overall large flower size of the genus. Flora—morphology, distribution. Funct Ecol Plants 207:107–118.  https://doi.org/10.1016/J.FLORA.2011.11.003 CrossRefGoogle Scholar
  26. Goudet J (1995) FSTAT (Version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486.  https://doi.org/10.1371/journal.pone.0026694 CrossRefGoogle Scholar
  27. Guindon S, Lethiec F, Duroux P, Gascuel O (2005) PHYML online—a web server for fast maximum likelihood-based phylogenetic inference. Nucleic Acids Res 33:W557–W559.  https://doi.org/10.1093/nar/gki352 CrossRefGoogle Scholar
  28. Huelsenbeck JP, Ronquist F (2001) MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755.  https://doi.org/10.1093/bioinformatics/17.8.754 CrossRefGoogle Scholar
  29. Isagi Y, Kanazashi T, Suzuki W et al (1999) Polymorphic microsatellite DNA markers for Magnolia obovata Thunb. and their utility in related species. Mol Ecol 8:698–700CrossRefGoogle Scholar
  30. Isagi Y, Tateno R, Matsuki Y et al (2007) Genetic and reproductive consequences of forest fragmentation for populations of Magnolia obovata. Ecol Res 22:382–389.  https://doi.org/10.1007/s11284-007-0360-5 CrossRefGoogle Scholar
  31. Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806.  https://doi.org/10.1093/bioinformatics/btm233 CrossRefGoogle Scholar
  32. Jiménez-Ramírez J, Vega-Flores K, Cruz-Durán R, Vázquez-García JA (2007) Una nueva especie del bosque mesofilo de montaña del estado de Guerrero, México. Bot Sci 80:73–76Google Scholar
  33. Jombart T, Devillard S, Dufour a-B, Pontier D (2008) Revealing cryptic spatial patterns in genetic variability by a new multivariate method. Heredity 101:92–103.  https://doi.org/10.1038/hdy.2008.34 CrossRefGoogle Scholar
  34. Kalinowski ST (2005) HP-RARE 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol Notes 5:187–189.  https://doi.org/10.1111/j.1471-8286.2004.00845.x CrossRefGoogle Scholar
  35. Kikuchi S, Isagi Y (2002) Microsatellite genetic variation in small and isolated populations of Magnolia sieboldii ssp. japonica. Heredity. 88:313–321.  https://doi.org/10.1038/sj/hdy/6800047 CrossRefGoogle Scholar
  36. Kohn C, Von Conrad K, Kramer M, Pooler M (2018) Genetic diversity of Magnolia ashei characterized by SSR markers. Conserv Genet.  https://doi.org/10.1007/s10592-018-1065-8 Google Scholar
  37. Kumar S, Stecher G, Li M et al (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549.  https://doi.org/10.1093/molbev/msy096 CrossRefGoogle Scholar
  38. Leigh JW, Bryant D (2015) Popart: full-feature software for haplotype network construction. Methods Ecol Evol 6:1110–1116.  https://doi.org/10.1111/2041-210X.12410 CrossRefGoogle Scholar
  39. Leimu R, Mutikainen P, Koricheva J, Fischer M (2006) How general are positive relationships between plant population size, fitness and genetic variation? J Ecol 94:942–952.  https://doi.org/10.1111/j.1365-2745.2006.01150.x CrossRefGoogle Scholar
  40. Liu F, Wang M, Damm U, Crous P, Cai L (2016) Species boundaries in plant pathogenic fungi: a Colletotrichum case study. BMC Evolutionary Biol 16:81.  https://doi.org/10.1186/s12862-016-0649-5 CrossRefGoogle Scholar
  41. Newton AC, Robertson A, Williams-Linera G, Rámirez-Marcial N, González-Espinosa M, Allnutt TR, Ennos R (2007) Genetic variation in two rare endemic mexican trees, Magnolia sharpii and Magnolia schiedeana. Silvae Genetica 57:348–356CrossRefGoogle Scholar
  42. Noreen AME, Webb EL (2013) High genetic diversity in a potentially vulnerable tropical tree species despite extreme habitat loss. PLoS One 8:e82632.  https://doi.org/10.1371/journal.pone.0082632 CrossRefGoogle Scholar
  43. Oksanen J, Blanchet F, Kindt R et al (2013) vegan: Community ecology package. R package version 2.0–10. R package version 1.  https://doi.org/10.4135/9781412971874.n145
  44. Peakall R, Smouse PE (2012) GenALEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539.  https://doi.org/10.1093/bioinformatics/bts460 CrossRefGoogle Scholar
  45. Postaire B, Magalon H, Bourmard CA, Bruggemann JH (2016) Molecular species delimitation methods and population genetics data reveal extensive lineage diversity and cryptic species in Aglaopheniidae (Hydrozoa). Mol Phylogenet Evol 105:36–49.  https://doi.org/10.1016/j.ympev.2016.08.013 CrossRefGoogle Scholar
  46. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959.  https://doi.org/10.1111/j.1471-8286.2007.01758.x Google Scholar
  47. R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org
  48. Raymond M, Rousset F (1995) GENEPOP (Version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249.  https://doi.org/10.1093/oxfordjournals.jhered.a111573 CrossRefGoogle Scholar
  49. Rivers M, Beech E, Murphy L, Oldfield S (2016) The red list of magnoliaceae, revised and extended. BGCI, RichmondGoogle Scholar
  50. Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138.  https://doi.org/10.1046/j.1471-8286.2003.00566.x CrossRefGoogle Scholar
  51. Rousset F (1997) Genetic Differentiation and Estimation of Gene Flow from F-Statistics Under Isolation by Distance. Genet 145:1219–1228Google Scholar
  52. SEMARNAT (Secretaría de Medio Ambiente y Recursos Naturales) (2010) NOM-059-SEMARNAT-2010 de protección ambiental—especies nativas de México de flora y fauna silvestres—categorías de riesgo, especificaciones para su inclusión, exclusión o cambio-lista de especies en riesgo. Diario Oficial de la Federación. 30 de Diciembre del 2010. Segunda sección, MéxicoGoogle Scholar
  53. Setsuko S, Ueno S, Tsumura Y, Tomaru N (2005) Development of microsatellite markers in Magnolia stellata (Magnoliaceae), a threatened Japanese tree. Conserv Genet 6:317–320.  https://doi.org/10.1007/s10592-004-7826-6 CrossRefGoogle Scholar
  54. Setsuko S, Nagamitsu T, Tomaru N (2013) Pollen flow and effects of population structure on selfing rates and female and male reproductive success in fragmented Magnolia stellata populations. BMC Ecol 13:10CrossRefGoogle Scholar
  55. Shaw J, Lickey EB, Beck JT et al (2005) The tortoiseand the hare II: relative utility of 21noncoding chloroplast DNA sequences forphylogenetic analysis. Am J Bot 92:142–166CrossRefGoogle Scholar
  56. Thioulouse J, Dray S (2007) Interactive multivariate data analysis in R with the ade4 and ade4TkGUI Packages. J Stat Softw 22:1–14.  https://doi.org/10.18637/jss.v022.i05 CrossRefGoogle Scholar
  57. Toledo-Aceves T, Meave JA, González-Espinosa M, Ramírez-Marcial N (2011) Tropical montane cloud forests: current threats and opportunities for their conservation and sustainable management in Mexico. J Environ Manag 92:974–981.  https://doi.org/10.1016/J.JENVMAN.2010.11.007 CrossRefGoogle Scholar
  58. Vaidya G, Lohman DJ, Meier R (2011) SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27:171–180.  https://doi.org/10.1111/j.1096-0031.2010.00329.x CrossRefGoogle Scholar
  59. Van Oosterhout C, Hutchinson WF, Derek PM, Willis PM (2004) Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538.  https://doi.org/10.1111/j.1471-8286.2004.00684.x CrossRefGoogle Scholar
  60. Vásquez-Morales SG, Sánchez-Velásquez LR (2011) Seed ecology and pre-germinative treatments in Magnolia schiedeana Schlecht, an endangered species from Mexico. J Food Agric Environ 9:604–608Google Scholar
  61. Vásquez-Morales SG, Tellez-Valdés O, Pineda-López MR et al (2014) Effect of climate change on the distribution of Magnolia schiedeana: a threatened species. Bot Sci 92:575–585CrossRefGoogle Scholar
  62. Vásquez-Morales SG, Sánchez-Velásquez LR, Pineda-lópez R et al (2017) Moderate anthropogenic disturbance does not affect the demography of Magnolia schiedeana, an endangered species from Mexico. Flora 234:77–83.  https://doi.org/10.1016/j.flora.2017.07.005 CrossRefGoogle Scholar
  63. Vázquez-García JA (1994) Magnolia (Magnoliaceae) in Mexico and Central America: a synopsis. Brittonia 46:1-23.  https://doi.org/10.2307/2807454 CrossRefGoogle Scholar
  64. Vázquez-García JA, De Castro-Arce E, Muñiz-Castro MA, Cházaro-Basáñez M, De J (2012) Magnolia zoquepopolucae (subsection Talauma, Magnoliaceae), a new species from Sierra de Santa Marta. Veracruz Mexico Phytotaxa 57:51–55CrossRefGoogle Scholar
  65. Vázquez-García JA, Muñiz-Castro MA, Arroyo F, Pérez AI, Serna M, Cuevas-Guzmán R, Domínguez-Yescas R, de Castro-Arce E, Gurrola-Diaz CM (2013a) Novelties of the neotropical Magnolia and addendum proposal the IUCN red list of Magnoliaceae. In: Salcedo-Pérez E, Hernández-Álvarez E, Vázquez-García JA, Escoto-García T, Díaz-Echavarría N (eds) Recursos Forestales en el Occidente de Mexico, Diversidad, Manejo, Aprovechamiento y Conservación. Universidad de Guadalajara. ISBN 978-607-8072-73-6Google Scholar
  66. Vázquez-García JA, Pérez-Farrera MA, Martínez-Camilo R, Muñiz-Castro MA, Martínez-Meléndez N (2013b) Magnolia lacandonica (subsection Talauma, Magnoliaceae), a new rainforest species from Chiapas, Mexico. Phytotaxa 79:30–36CrossRefGoogle Scholar
  67. Vázquez-García JA, Domínguez-Yescas R, Velazco-Macías C et al (2016) Magnolia nuevoleonensis sp. nov. (Magnoliaceae) from northeastern Mexico and a key to species of section Macrophylla. Nordic J Bot 34:48–53CrossRefGoogle Scholar
  68. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR Protocols: a guide to methods and applications. Academic Press, New York, pp 315–322Google Scholar
  69. Whitlock R, Hipperson H, Thompson DBA, Butlin RK, Burke T (2016) Consequences of in-situ strategies for the conservation of plant genetic diversity. Biol Conserv 203:134–142.  https://doi.org/10.1016/j.biocon.2016.08.006 CrossRefGoogle Scholar
  70. Wu FQ, Shen SK, Zhang XJ et al (2015) Genetic diversity and population structure of an extremely endangered species: the world’s largest Rhododendron. AoB Plants.  https://doi.org/10.1093/aobpla/plu082 Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.CONACYT, Red de Diversidad Biológica del Occidente Mexicano, Instituto de Ecología, A.C.PátzcuaroMexico
  2. 2.Independent ConsultantPátzcuaroMexico

Personalised recommendations