pp 1–10 | Cite as

Chromosomal polymorphism and molecular variability in the pearly razorfish Xyrichtys novacula (Labriformes, Labridae): taxonomic and biogeographic implications

  • Mauro Nirchio
  • Juan Ignacio Gaviria
  • Zoila R. Siccha-Ramirez
  • Claudio Oliveira
  • Fausto Foresti
  • Valentina Milana
  • Anna Rita RossiEmail author
Original Paper


The pearly razorfish Xyrichtys novacula (Linnaeus, 1758) is a sedentary benthic species distributed in both sides of the Atlantic Ocean and in the Mediterranean Sea. Previous cytogenetic analysis reported different diploid numbers in samples from Italy, Venezuela and Brazil. This research aims to test the hypothesis that samples from American Atlantic coast and Mediterranean Sea belong to the same single evolutionary lineage, characterized by intra-specific chromosome polymorphism. To this purpose a cytogenetic and molecular (mitochondrial COI sequences) survey was undertaken. Results revealed the existence of three different pearly razorfish molecular lineages: one present in Mediterranean Sea and two in the central and south American area, which are characterized by different karyotypes. One of these lineages shows substantial intra-population chromosomal polymorphism (2n = 45–48) determined by Robertsonian fusions that produce large metacentric chromosomes. On the whole data suggest that specimens morphologically identified as X. novacula correspond to three cryptic species.


Cytochrome C oxidase subunit I Cytogenetics mtDNA Novaculini Species complex 



Financial support was provided by Consejo de Investigación, Universidad de Oriente-CIUDO, Venezuela (to M.N. and J.I.G.), Grant, no. Cl-6-030601-1793/12, by Fundação de Amparo à Pesquisa do Estado de São Paulo-FAPESP, Brazil and Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq, Brazil (to C.O. and F.F.), and by Sapienza University of Rome, Italy, Progetto Università 2014 (to V.M. and A.R.). We are grateful to Elisa Angiulli and Mariangela Coriandri (Sapienza University of Rome, Italy), who kindly helped in the collection of fishes in Italy and to Regulo López and Juan Marcano (Universidad de Oriente) who helped in the collection of fishes in Margarita and Cubagua Islands.

Supplementary material

10709_2019_51_MOESM3_ESM.pdf (203 kb)
Supplementary material 3 (PDF 193 KB)
10709_2019_51_MOESM1_ESM.pdf (194 kb)
Supplementary material 1 (PDF 114 KB)
10709_2019_51_MOESM2_ESM.pdf (114 kb)
Supplementary material 2 (PDF 202 KB)
10709_2019_51_MOESM4_ESM.pdf (191 kb)
Supplementary material 4 (PDF 190 KB)


  1. Aljanabi SM, Martinez I (1997) Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucl Acids Res 25:4692–4693CrossRefGoogle Scholar
  2. Almeida LAH, Nunes LA, Bitencourt JA, Molina WF, Affonso PRAM (2017) Chromosomal evolution and cytotaxonomy in wrasses (Perciformes; Labridae). J Hered 108:239–253CrossRefGoogle Scholar
  3. Alós J, Cabanellas-Reboredo M, Lowerre-Barbieri S (2012) Diel behaviour and habitat utilisation by the pearly razorfish during the spawning season. Mar Ecol Prog Ser 460:207–220CrossRefGoogle Scholar
  4. Amores A, Giles V, Thode G, Alvarez MC (1990) Adaptative character of a Robertsonian fusion in chromosomes of the fish Gobius paganellus (Pisces, Perciformes). Heredity 65:151CrossRefGoogle Scholar
  5. Angiulli E, Sola L, Ardizzone G, Fassatoui C, Rossi AR (2016) Phylogeography of the common pandora Pagellus erythrinus in the central Mediterranean Sea: sympatric mitochondrial lineages and genetic homogeneity. Mar Biol Res 12:4–15CrossRefGoogle Scholar
  6. Arai R (2011) Fish Karyotypes: a check list. Springer, BerlinGoogle Scholar
  7. Artoni RF, Vicari MR, de Almeida MC, Moreira-Filho O, Bertollo LAC (2009) Karyotype diversity and fish conservation of southern field from South Brazil. Rev Fish Biol Fish 19:393–401CrossRefGoogle Scholar
  8. Artoni RF, Castro JP, Jacobina UP, Lima-Filho PA, da Costa GWWF, Molina WF (2015) Inferring diversity and evolution in fish by means of integrative molecular cytogenetics. Sci World J 5:365787Google Scholar
  9. Benvenuto C, Coscia I, Chopelet J, Sala-Bozano M, Mariani S (2017) Ecological and evolutionary consequences of alternative sex-change pathways in fish. Sci Rep 7:9084CrossRefGoogle Scholar
  10. Bertollo LAC (2007) Chromosome evolution in the Neotropical Erythrinidae fish family: an overview. In: Pisano E, Ozouf Costaz C, Foresti F, Kapoor BG (eds.) Fish Cytogenetics. Science Publishers, Stevenson Ranch, pp 195–211Google Scholar
  11. Candi G, Castriota L, Andaloro F, Finoia MG, Marino G (2004) Reproductive cycle and sex inversion in razor fish, a protogynous labrid in the southern Mediterranean Sea. J Fish Biol 64:1498–1513CrossRefGoogle Scholar
  12. Caputo V, Caniglia ML, Machella N (1999) The chromosomal complement of Aphia minuta, a paedomorphic goby. J Fish Biol 55:455–458Google Scholar
  13. Cardinale M, Colloca F, Ardizzone GD (1998) Growth and reproduction of Xyrichthys novacula (Pisces: Labridae) in the Mediterranean Sea. Sci Mar 62:193–201CrossRefGoogle Scholar
  14. Cervigón F (1993) Los peces marinos de Venezuela, vol 2. Fundación Científica Los Roques, CaracasGoogle Scholar
  15. Cioffi MB, Bertollo LAC (2012) Chromosomal distribution and evolution of repetitive DNAs in fish. Genome Dyn 7:197–221CrossRefGoogle Scholar
  16. Cioffi MB, Sánchez A, Marchal JA, Kosyakova N, Liehr T et al (2011) Cross-species chromosome painting tracks the independent origin of multiple sex chromosomes in two cofamiliar Erythrinidae fishes. BMC Evol Biol 11:186CrossRefGoogle Scholar
  17. Cioffi MB, Bertollo LAC, Villa MA, de Oliveira EA, Tanomtong A et al (2015) Genomic Organization of Repetitive DNA Elements and Its Implications for the Chromosomal Evolution of Channid Fishes (Actinopterygii, Perciformes). PLoS One 10:e0130199CrossRefGoogle Scholar
  18. Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659CrossRefGoogle Scholar
  19. Collette BB, Rützler K (1977) Reef fishes over sponge bottoms off the mouth of the Amazon River. In: Proceedings, third international Coral Reef symposium rosenstlel school of Marine and Atmospheric Science University of Miami. Florida, USA. May 1977Google Scholar
  20. Cowman PF, Bellwood DR (2011) Coral reefs as drivers of cladogenesis: expanding coral reefs, cryptic extinction events, and the development of biodiversity hotspots. J Evol Biol 24:2543–2562CrossRefGoogle Scholar
  21. de Sena DCS, Molina WF (2007) Chromosomal rearrangements associated with pelagic larval duration in Labridae (Perciformes). J Exp Mar Bio Ecol 353:203–210CrossRefGoogle Scholar
  22. do Nascimento VD, Almeida Coelho K, Nogaroto V, de Almeida RB, Ziemniczak K et al (2018) Do multiple karyomorphs and population genetics of freshwaterdarter characines (Apareiodon affinis) indicate chromosomal speciation? Zool Anz 272:93–103CrossRefGoogle Scholar
  23. Faria R, Navarro A (2010) Chromosomal speciation revisited: rearranging theory with pieces of evidence. Trends Ecol Evol 25:660–669CrossRefGoogle Scholar
  24. Floeter SR, Gasparini JL (2000) The southwestern Atlantic reef fish fauna: composition and zoogeographic patterns. J Fish Biol 56:1099–1114CrossRefGoogle Scholar
  25. Floyd R, Abebe E, Papert A, Blaxter M (2002) Molecular barcodes for soil nematode identification. Mol Ecol 11:839–850CrossRefGoogle Scholar
  26. Fricke R, Eschmeyer WN, (eds) (2018b). Catalog of fishes: genera, species, references. (accessed on 15 November 2018)
  27. Fricke R, Eschmeyer WN, Fong JD (2018a) Species by family/subfamily. (Accessed 15 November 2018)
  28. Froese R, Pauly D (2018) FishBase. accessed on 30 June 2018)
  29. Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W et al (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321CrossRefGoogle Scholar
  30. Hodge JR, Bellwood DR (2016) The geography of speciation in coral reef fishes: the relative importance of biogeographical barriers in separating sister-species. J Biogeogr 43:1324–1335CrossRefGoogle Scholar
  31. Howell WM, Black DA (1980) Controlled silver-staining of nucleolus organizer regions with a protective colloidal developer: a 1-step method. Experientia 36:1014–1015CrossRefGoogle Scholar
  32. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755CrossRefGoogle Scholar
  33. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120CrossRefGoogle Scholar
  34. Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol 33:1870–1874CrossRefGoogle Scholar
  35. Leary SL, Underwood W, Anthony R, Cartner S, Corey D et al (2013) AVMA guidelines for the euthanasia of animals: 2013 edition. American Veterinary Medical Association, SchaumburgGoogle Scholar
  36. Levan A, Fredga K, Sandberg AA, Lima-Filho PA, Rosa RS et al (1964) Nomenclature for centromeric position on chromosomes. Hereditas 52:201–220CrossRefGoogle Scholar
  37. Marconato A, And VT, Marin G (1995) The mating system of Xyrichthys novacula: sperm economy and fertilization success. J Fish Biol 47:292–301Google Scholar
  38. Martinez PA, Zurano JP, Amado TF, Penone C, Betancurr RR et al (2015) Chromosomal diversity in tropical reef fishes is related to body size and depth range. Mol Phylogenet Evol 93:1–4CrossRefGoogle Scholar
  39. Martins C (2007) Chromosomes and repetitive DNAs: a contribution to the knowledge of fish genome. In: Pisano E, Ozouf Costaz C, Foresti F, Kapoor BG (eds.) Fish Cytogenetics. Science Publishers, Stevenson Ranch, pp 421–453Google Scholar
  40. Mezzasalma M, Andreone F, Aprea G, Glaw F, Odierna G et al (2017) When can chromosomes drive speciation?: The peculiar case of the Malagasytomato frogs (genus Dyscophus). Zool Anz 268:41–46CrossRefGoogle Scholar
  41. Milana V, Fusari A, Rossi A, Sola L (2011) Molecular and morphological identification of an uncommon centrolophid fish. Central Europ J Biol 6:445 &#183Google Scholar
  42. Miloslavich MP, Díaz JM, Klein E, Alvarado JJ, Díaz C et al (2010) Marine biodiversity in the Caribbean: regional estimates and distribution patterns. PLoS One 5:e11916CrossRefGoogle Scholar
  43. Molina WF, Martinez PA, Bertollo LAC, Bidau CJ (2014) Evidence for meiotic drive as an explanation for karyotype changes in fishes. Mar Genom 15:29–34CrossRefGoogle Scholar
  44. Moura RL, Amado-Filho GM, Moraes FC, Brasileiro PS, Salomon PS et al (2016) An extensive reef system at the Amazon River mouth. Sci Adv 2:e1501252CrossRefGoogle Scholar
  45. Nirchio M, Oliveira C (2006) Citogenética de peces. Editado por Universidad de Oriente, Cumaná, Venezuela, ISBN 980–234Google Scholar
  46. Nirchio M, Mujica A, Oliveira C et al (2013) Pseudoplatystoma metaense and P. orinocoense (Siluriformes: Pimelodidae) from the Orinoco basin, Venezuela: cytogenetic and molecular analyses. Ital J Zool 80:526–535CrossRefGoogle Scholar
  47. Nirchio M, Rossi AR, Foresti F, Oliveira C (2014) Chromosome evolution in fishes: a new challenging proposal from Neotropical species. Neotrop Ichthyol 12:761–770CrossRefGoogle Scholar
  48. Nirchio M, Oliveira C, Siccha-Ramirez ZR, Sene VF, Sánchez-Romero OR et al (2016) Cryptic Caribbean species of Scorpaena (Actinopterygii: Scorpaeniformes) suggested by cytogenetic and molecular data. J Fish Biol 89:1947–1957CrossRefGoogle Scholar
  49. Nirchio M, Oliveira C, Siccha-Ramirez ZR, Sene VF, Sola L et al (2017) The Mugil curema species complex (Pisces, Mugilidae): a new karyotype for the Pacific white mullet mitochondrial lineage. Comp Cytogenet 11:225–237CrossRefGoogle Scholar
  50. Nylander JAA (2004) MrModeltest v2. 3 software. Evolutionary Biology Center, University U, Sweden Available from: http://www.abcse/nylander/mrmodeltest2/mrmodeltest2
  51. Pansonato-Alves JC, Serrano ÉA, Utsunomia R, Camacho JPM, da Costa Silva GJ et al (2014) Single origin of sex chromosomes and multiple origins of B chromosomes in fish genus Characidium. PLoS One 9:e107169CrossRefGoogle Scholar
  52. Parenti P, Randall JE (2011) Checklist of the species of the families Labridae and Scaridae: an update. Smithiana Bull 29–44Google Scholar
  53. Parise-Maltempi PP, da Silva EL, Rens W, Dearden F, O’Brien PCM et al (2013) Comparative analysis of sex chromosomes in Leporinus species (Teleostei, Characiformes) using chromosome painting. BMC Genet 14:60CrossRefGoogle Scholar
  54. Phillips RB (2013) Evolution of the sex chromosomes in salmonid fishes. Cytogenet Genome Res 141:177–185CrossRefGoogle Scholar
  55. Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818CrossRefGoogle Scholar
  56. Randall JE, Earle JL (2002) Review of Hawaiian Razorfishes of the Genus Iniistius (Perciformes: Labridae). Pac Sci 56:389–402CrossRefGoogle Scholar
  57. Rocha LA (2003) Patterns of distribution and processes of speciation in Brazilian reef fishes. J Biogeogr 30:1161–1171CrossRefGoogle Scholar
  58. Ryberg R (2015) Molecular operational taxonomic units as approximations of species in the light of evolutionary models and empirical data from Fungi. Mol Ecol 24:5770–5777CrossRefGoogle Scholar
  59. Siqueira AC, Oliveira-Santos LGR, Cowman PF, Floeter SR (2016) Evolutionary processes underlying latitudinal differences in reef fish biodiversity. Glob Ecol Biogeogr 25:1466–1476CrossRefGoogle Scholar
  60. Sumner AT (1972) A simple technique for demonstrating centromeric heterochromatin. Exp Cell Res 75:304–306CrossRefGoogle Scholar
  61. Thode G, Giles V, Alvarez MC (1985) Multiple Chromosome Polymorphism in Gobius paganellus (Teleostei, Perciformes). Heredity 54:3CrossRefGoogle Scholar
  62. Tortonese E (1970) Fauna d’Italia,“Osteichthyes”, pesci ossei, volume 1. Bologna, Edizioni CalderiniGoogle Scholar
  63. Utsunomia R, Pansonato Alves JC, Paiva LRS, Costa Silva GJ, Oliveira C et al (2014) Genetic differentiation among distinct karyomorphs of the wolf fish Hoplias malabaricus species complex (Characiformes, Erythrinidae) and report of unusual hybridization with natural triploidy. J Fish Biol 85:1682–1692CrossRefGoogle Scholar
  64. Vasil’ev VP, Prazdnikov DV, Vasil’eva ED (2012) Chromosome polymorphism of stargazer Uranoscopis scaber (Uranoscopidae, Perciformes) from the Black Sea. J Ichthyol 52:296–300CrossRefGoogle Scholar
  65. Victor BC, Wellington GM, Caldow C (2001) A review of the razorfishes (Perciformes: Labridae) of the eastern Pacific Ocean. Rev Biol Trop 49(Suppl 1):101–110Google Scholar
  66. Vitturi R, Lafargue F (1992) Karyotype analyses reveal inter-individual polymorphism and association of nucleolus-organizer-carrying chromosomes in Capros aper (Pisces: Zeiformes). Mar Biol 112:37–41CrossRefGoogle Scholar
  67. Vitturi R, Carbone P, Catalano E, Macaluso M (1984) Chromosome polymorphism in Gobius paganellus, Linneo 1758 (pisces, gobiidae). Biol Bull 167:658–668CrossRefGoogle Scholar
  68. Vitturi R, Catalano E, Macaluso M, Zava B (1986) Karyotypes of nine species of the family Labridae (Pisces, Perciformes). Biol Zent Bl 105:519–530Google Scholar
  69. Vitturi R, Catalano E, Lo Conte MR, Spampinato P (1989) Ag-NORs and C-banding pattern of the labrid species Xyrichthys novacula (L.) (Pisces, Perciformes). Biol Zent Bl 108:263–266Google Scholar
  70. Westneat MW (2002) Labridae. In: Carpenter KE (ed) The living marine resources of the Western Central Atlantic. Bony fishes part 2 (Opistognathidae to Molidae), sea turtles and marine mammals. FAO, Rome, pp 1701–1739Google Scholar
  71. Westneat MW, Alfaro ME (2005) Phylogenetic relationships and evolutionary history of the reef fish family Labridae. Mol Phylogenet Evol 36:370–390CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Escuela de Ciencias Aplicadas del Mar, Núcleo de Nueva EspartaUniversidad de OrientePorlamarVenezuela
  2. 2.Universidad Técnica de MachalaMachalaEcuador
  3. 3.Instituto del Mar del Perú, Laboratorio Costero de TumbesTumbesPeru
  4. 4.Departamento de MorfologiaInstituto de Biociências Universidade Estadual Paulista-UNESPBotucatuBrazil
  5. 5.Dipartimento di Biologia e Biotecnologie “C. Darwin”Sapienza-Università di RomaRomeItaly

Personalised recommendations