Skip to main content

Advertisement

Log in

Influence of environmental heterogeneity on the distribution and persistence of a subterranean rodent in a highly unstable landscape

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

In this study we combine information from landscape characteristics, demographic inference and species distribution modelling to identify environmental factors that shape the genetic distribution of the fossorial rodent Ctenomys. We sequenced the mtDNA control region and amplified 12 microsatellites from 27 populations distributed across the Iberá wetland ecosystem. Hierarchical Bayesian modelling was used to construct phylogenies and estimate divergence times. We developed species distribution models to determine what climatic variables and soil parameters predicted species presence by comparing the current to the historic and predicted future distribution of the species. Finally, we explore the impact of environmental variables on the genetic structure of Ctenomys based on current and past species distributions. The variables that consistently correlated with the predicted distribution of the species and explained the observed genetic differentiation among populations included the distribution of well-drained sandy soils and temperature seasonality. A core region of stable suitable habitat was identified from the Last Interglacial, which is projected to remain stable into the future. This region is also the most genetically diverse and is currently under strong anthropogenic pressure. Results reveal complex demographic dynamics, which have been in constant change in both time and space, and are likely linked to the evolution of the Paraná River. We suggest that any alteration of soil properties (climatic or anthropic) may significantly impact the availability of suitable habitat and consequently the ability of individuals to disperse. The protection of this core stable habitat is of prime importance given the increasing levels of human disturbance across this wetland system and the threat of climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amore L (2011) The guarani aquifer: from knowledge to water management. Int J Water Resour Dev 27(3):463–476

    Article  Google Scholar 

  • Anderson SJ, Kierepka EM, Swihart RK, Latch EK, Rhodes OE Jr (2015) Assessing the permeability of landscape features to animal movement: using genetic structure to infer functional connectivity. PLoS ONE 10(2):e0117500. doi:10.1371/journal.pone.0117500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowne DR, Bowers MA (2004) Interpatch movements in spatially structured populations: a literature review. Landscape Ecol 19(1):1–20

    Article  Google Scholar 

  • Buffenstein R (2000) Ecophysiological responses of subterranean rodents to underground habitats. In: Lacey EA, Patton JL, Cameron GN (eds) Life underground. The University of Chicago Press, Chicago, pp 62–110

    Google Scholar 

  • Busch C, Antinuchi CD, del Valle JC, Kittlein MJ, Malizia AI, Vassallo AI, Zenuto RR (2000) Population ecology of subterranean rodents. In: Lacey EA, Cameron G, Patton JL (eds) Life underground: the biology of subterranean rodents. The University of Chicago Press, Chicago, pp 183–226

    Google Scholar 

  • Carnaval AC, Hickerson MJ, Haddad CF, Rodrigues MT, Moritz C (2009) Stability predicts genetic diversity in the Brazilian Atlantic forest hotspot. Science 323(5915):785–789

    Article  CAS  PubMed  Google Scholar 

  • Castellanos A (1959) Historia hidrogeológica del río Corriente. Facultad de Filosofía y Letras. Universidad Nacional del Litoral, Rosario, p 27

  • Cruzate G, Gomez L, Pizarro M.J, Mercuri P, Banchero S (2006–2009) SAGyP—INTA—Proyect PNUD ARG/85/019. With the involvement of the Institute of soil and the EEAs of INTA. Digital version corrected and revised (Version 1.0)

  • Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ (2011) A statistical explanation of MaxEnt for ecologists. Divers Distrib 17:43–57. doi:10.1111/j.1472-4642.2010.00725.x

    Article  Google Scholar 

  • Fahrig L, Merriam G (1985) Habitat patch connectivity and population survival. Ecology 66:1762–1768

    Article  Google Scholar 

  • Fernández MJG, Gaggiotti OE, Mirol P (2012) The evolution of a highly speciose group in a changing environment: are we witnessing speciation in the Ibera´ wetlands? Mol Ecol 13:3266–3282

    Article  Google Scholar 

  • Foll M, Gaggiotti OE (2006) Identifying the environmental factors that determine the genetic structure of populations. Genetics 174:875–891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2010) Introduction to conservation genetics, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Giménez MD, Mirol PM, Bidau CJ, Searle JB (2002) Molecular analysis of populations of Ctenomys (Caviomorpha, Rodentia) with high karyotypic variability. Cytogenet Genome Res 96:130–136

    Article  PubMed  Google Scholar 

  • Heled J, Drummond AJ (2010) Bayesian inference of species trees from multilocus data. Mol Biol Evol 27:570–580

    Article  CAS  PubMed  Google Scholar 

  • Iriondo MH (1979) Origen y evolución del río Paraná.‖ Segunda Jornadas del Paraná Medio, Actas d-I – d-V. Universidad Nacional del Litoral, Santa Fe

    Google Scholar 

  • Iriondo MH (2000) Aspectos geológicos y geomorfológicos.‖ En el río Paraná en su tramo medio. Centro de publicaciones, Secretaría de Extensión. Universidad Nacional del Litoral, Santa Fe

  • Iriondo M, García N (1993) Climatic variations in the Argentina plains during the last 18 000 years. Palaeogeogr Palaeocol 101:209–220

    Article  Google Scholar 

  • Jarvis JUM, Bennett NC (1991) Ecology and behaviour of the family Bathyergidae. In: Sherman PW, Jarvis JUM, Alexander RD (eds) The biology of the naked mole-rat. Princeton University Press, Princeton, pp 66–96

    Google Scholar 

  • Kittlein MJ, Gaggiotti O (2008) Interactions between environmental factors can hide isolation by distance patterns: a case study of Ctenomys rionegrensis in Uruguay. P Roy Soc Lond B Bio Ser B 275(1651):2633–2638

    Article  Google Scholar 

  • Kuhner MK (2006) LAMARC 2.0: maximum likelihood and Bayesian estimation of population parameters. Bioinformatics 22:768–770

    Article  CAS  PubMed  Google Scholar 

  • Lacey EA (2001) Microsatellite variation in solitary and social tuco-tucos: molecular properties and population dynamics. Heredity 86:628–637

    Article  CAS  PubMed  Google Scholar 

  • Lacey EA, Maldonado JE, Clabaugh JP, Matocq M (1999) Interspecific variation in microsatellites isolated from tuco-tucos (Rodentia: Ctenomyidae). Mol Ecol 8:1753–1768

    Article  Google Scholar 

  • Lada H, Thomson JR, Mac Nally R, Taylor AC (2008) Impact of massive landscape change on a carivorous marsupial in sout-eastern australia: inferences from landscape genetics analysis. J Appl Ecol 45:1732–1741

    Article  Google Scholar 

  • Lal R (1991) Soil structure and sustainability. J Sustain Agric 1:67–92

    Article  Google Scholar 

  • Manel S, Schwartz MK, Luikart G, Taberlet P (2003) Landscape genetics: combining landscape ecology and population genetics. Tends Ecol Evol 18:189–197

    Article  Google Scholar 

  • Mapelli FJ, Kittlein MJ (2009) Influence of patch and landscape characteristics on the distribution of the subterranean rodent Ctenomys porteousi. Landscape Ecol 24:723–733

    Article  Google Scholar 

  • Mirol P, Giménez MD, Searle JB, Bidau CJ, Faulkes CG (2010) Population and species boundaries in the South American subterranean rodent Ctenomys in a dynamic environment. Biol J Linn Soc 100:368–383

    Article  Google Scholar 

  • Mora MS, Cutrera AP, Lessa EP, Vassallo AI, D’Anatro A, Mapelli FJ (2013) Phylogeography and population genetic structure of the Talas tuco-tuco (Ctenomys talarum): integrating demographic and habitat histories. J Mammal 94(2):459–476

    Article  Google Scholar 

  • Orfeo O (2005) Historia geológica del Iberá, provincia de Corrientes, como escenario de biodiversidad. Miscelanea 14:71–78

    Google Scholar 

  • Ortego J, Riordan EC, Gugger PF, Sork VL (2012) Influence of environmental heterogeneity on genetic diversity and structure in an endemic southern Californian oak. Mol Ecol 21(13):3210–3223

    Article  PubMed  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190(3):231–259

    Article  Google Scholar 

  • Popolizio E (2004) El Paraná, un río y su historia geomorfológica. Tomos I y II. Tesis Doctoral, Centro de Geociencias Aplicadas. Resistencia Tomo 19:1–362

    Google Scholar 

  • Posada D (2008) jModeltest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256

    Article  CAS  PubMed  Google Scholar 

  • Rambaut A (2012) Website: http://tree.bio.ed.ac.uk/software/figtree

  • Rambaut A, Drummond AJ (2007) http://beast.bio.ed.ac.uk/tracer TRACER v1.4

  • Reig OA, Kiblisky P (1969) Chromosome multiformity in the genus Ctenomys (Rodentia, Octodontidae). Chromosoma 28(2):211–244

    Article  CAS  PubMed  Google Scholar 

  • Reig OA, Busch C, Ortells MO, Contreras JR (1990) An overview of evolution, systematics, population biology, cytogenetics, molecular biology and speciation in Ctenomys, in Nevo E, Reig OA (eds): evolution of subterranean mammals at the organismal and molecular levels, 71–96. Alan R. Liss, NewYork

  • Rodriguez-Robles JA, Jezkova T, Leal M (2010) Climatic stability and genetic divergence in the tropical insular lizard Anolis krugi, the Puerto Rican “Lagartijo jardinero de la Montaña”. Mol Ecol 19:1860–1876

    Article  PubMed  Google Scholar 

  • Roratto PA, Fernandes FA, Freitas TR (2015) Phylogeography of the subterranean rodent Ctenomys torquatus: an evaluation of the riverine barrier hypothesis. J Biogeogr 42(4):694–705

    Article  Google Scholar 

  • Stevaux JC (2000) Climatic events during the late pleistocene and holocene in the upper Parana river: correlation with NE Argentina and South-Central Brazil. Quatern Int 72(1):73–85

    Article  Google Scholar 

  • Stolz JFB (2006) Dinámica populacional e relações espaciais do tuco-tuco das dunas (Ctenomys flamarioniRodentiCtenomyidae) na estação ecológica do Taim-RS/Brasil. Universidade Federal do Rio Grande do Sul, Dissertação de Mestrado

    Google Scholar 

  • Storfer A, Murphy MA, Spear SF, Holderegger R, Waits LP (2010) Landscape genetics: where are we now? Mol Ecol 19:3496–3514

    Article  PubMed  Google Scholar 

  • Taylor PD, Fahrig L, Henein K, Merriam G (1993) Connectivity is a vital element of landscape structure. Oikos 68:571–573

    Article  Google Scholar 

  • Vleck D (1979) The energy cost of burrowing by the pocket gopher Thomomys bottae. Physiol Zool 52:122–134

    Article  Google Scholar 

  • Vleck D (1981) Burrow structure and foraging costs in the fossorial rodent, Thomomys bottae. Oecologia 49(3):391–396

    Article  Google Scholar 

  • Wlasiuk G, Garza JC, Lessa EP (2003) Genetic and geographic differentiation in the Rio Negro tuco-tuco (Ctenomys  rionegrensis): inferring the roles of migration and rift from multiple genetic markers. Evolution 57:913–926

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by Agencia Nacional de Promoción Científica y Técnica (PICT 1551) and Consejo Nacional de Investigación, Ciencia y Técnica, Argentina. We thank Fernando Mapelli, Matías Mora, Alberto Fameli and Laura Wolfenson for their incalculable help during fieldwork and lab work. O.E.G was supported by the Marine Alliance for Science and Technology for Scotland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Jimena Gómez Fernández.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Data archiving

For Mitochondrial DNA sequences and microsatellite data were see Fernández et al. (2012).

Human and animal participants

This article does not contain any studies with human participants performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gómez Fernández, M.J., Boston, E.S.M., Gaggiotti, O.E. et al. Influence of environmental heterogeneity on the distribution and persistence of a subterranean rodent in a highly unstable landscape. Genetica 144, 711–722 (2016). https://doi.org/10.1007/s10709-016-9937-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-016-9937-7

Keywords

Navigation