, Volume 144, Issue 5, pp 591–599 | Cite as

A new multiple sex chromosome system X1X1X2X2/X1Y1X2Y2 in Siluriformes: cytogenetic characterization of Bunocephalus coracoideus (Aspredinidae)

  • Milena Ferreira
  • Caroline Garcia
  • Daniele Aparecida Matoso
  • Isac Silva de Jesus
  • Eliana Feldberg


We analyzed one Bunocephalus coracoideus population from the Negro River basin using cytogenetic techniques. The results showed a diploid number of 42 chromosomes in both sexes, with the karyotypic formula 4m + 14sm + 24a and fundamental number (FN) = 60 for females and the formula 5m + 14sm + 23a and FN = 61 for males, constituting an X1X1X2X2/X1Y1X2Y2 multiple sex chromosome system. The constitutive heterochromatin is distributed in the pericentromeric regions of most of the chromosomes, except for the sex chromosomes, of which the X1, X2, and Y1 chromosomes were euchromatic and the Y2 chromosome was partially heterochromatic. 18S rDNA mapping confirmed the presence of nucleolar organizer regions on the short arms of the fifth chromosomal pair for both sexes. The 5S rDNA is present in the terminal regions of the short arms on the 2nd, 10th, and 12th pairs and on the X2 chromosome of both sexes; however, we observed variations in the presence of these ribosomal cistrons on the Y1 chromosome, on which the cistrons are pericentromeric, and on the Y2 chromosome, on which these cistrons are present in the terminal portions of the short and long arms. Telomeric sequences are located in the terminal regions of all of the chromosomes, particularly conspicuous blocks on the 10th and 12th pairs and internal telomeric sequences in the centromeric regions of the 1st, 6th, and 9th pairs for both sexes. This work describes an new sex chromosomes system for the Siluriformes and increases our genetic knowledge of the Aspredinidae family.


Constitutive heterochromatin 5S rDNA Banjo catfish Multiple sex chromosomes 



The authors are grateful to Cristhiana Paula Röpke, PhD for identifying the sexes of the analyzed specimens. This study was supported by the Brazilian agencies Instituto Nacional de Pesquisas da Amazônia/Genética, Conservação e Biologia Evolutiva (INPA/GCBEv), Fundação de Amparo a Pesquisas do Estado do Amazonas (UNIVERSAL AMAZONAS/FAPEAM 030/2013; PRONEX FAPEAM/CNPq 003/2009), the Center for Studies of Adaptation to Environmental Changes in the Amazon (INCT ADAPTA, FAPEAM/CNPq 573976/2008-2), and Edital MCT/CNPq/MEC/CAPES/FNDCT–Ação Transversal/FAPs No. 47/2010 (Rede BioPHAM).

Compliance with Ethical Standards

Conflict of interest

The authors declare that there are no conflicts of interest.

Ethical Standards

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. This work was approved by the Ethics Committee for Animal Use of the National Institute of Amazon Research and is registered there under the protocol number 010/2015. This article does not contain any studies with human participants performed by any of the authors.


  1. Almeida JS, Affonso PRAM, Diniz D, Carneiro PLS, Dias AL (2013) Chromosomal variation in the tropical armored catfish Callichthys callichthys (Siluriformes, Callichthyidae): implications for conservation and taxonomy in a species complex from a Brazilian hotspot. Zebrafish 10:451–458. doi: 10.1089/zeb.2013.0885 CrossRefPubMedGoogle Scholar
  2. Almeida JS, Migues VH, Diniz D, Affonso PR (2015) A unique sex chromosome system in the knifefish Gymnotus bahianus with inferences about chromosomal evolution of Gymnotidae. J Hered 106(2):177–183. doi: 10.1093/jhered/esu087 CrossRefPubMedGoogle Scholar
  3. Almeida-Toledo LF, Foresti F (1985) As Regiões Organizadoras do Nucléolo em peixes. Cien Cult 37:448–453Google Scholar
  4. Alves AL, Oliveira C, Nirchio M, Granado A, Foresti F (2006) Karyotypic relationships among the tribes of Hypostominae (Siluriformes: Loricariidae) with description of XO sex chromosome system in a Neotropical fish species. Genetica 128:1. doi: 10.1007/s10709-005-0715-1 CrossRefPubMedGoogle Scholar
  5. Andreata AA, Almeida-Toledo LF, Oliveira C, Toledo-Filho SA (1992) Chromosome studies in Hypoptopomatinae (Pisces, Siluriformes, Loricariidae): I. XX/XY sex chromosome heteromorphism in Pseudotocinclus tietensis. Cytologia 57:369–372. doi: 10.1508/cytologia.57.369 CrossRefGoogle Scholar
  6. Baskin JN (1973) Structure and relationships of the Trichomycteridae. Unpublished Ph.D. Dissertation, City University of New York, New YorkGoogle Scholar
  7. Bertollo LAC, Born GG, Dergam JA, Fenocchio AS, Moreira-Filho O (2000) A biodiversity approach in the neotropical Erythrinidae fish, Hoplias malabaricus. Karyotypic survey, geographic distribution of cytotypes and cytotaxonomic considerations. Chromosome Res 8:603–613. doi: 10.1023/A:1009233907558 CrossRefPubMedGoogle Scholar
  8. Blanco DR, Vicari MR, Lui RL, Artoni RF, Almeida MC, Traldi JB, Margarido VP, Moreira-Filho O (2014) Origin of the X1X1X2X2/X1X2Y sex chromosome system of Harttia punctata (Siluriformes, Loricariidae) inferred from chromosome painting and FISH with ribosomal DNA markers. Genetica 142:119–126. doi: 10.1007/s10709-014-9759-4 PubMedGoogle Scholar
  9. Britto MR (2002) Análise filogenética da ordem Siluriformes com ênfase nas relações da superfamília Loricarioidea (Teleostei: Ostariophysi). Unpublished Ph.D. Thesis, Universidade Estadual de São Paulo, São PauloGoogle Scholar
  10. Cardoso AR (2008) Filogenia da família Aspredinidae Adams, 1854 e revisão taxonômica de Bunocephalinae Eigenmann & Eigenmann, 1888 (Teleostei: Siluriformes: Aspredinidae). Unpublished Ph.D. Thesis, Pontifícia Universidade Católica do Rio Grande Do Sul, Porto AlegreGoogle Scholar
  11. Cardoso AR (2010) Bunocephalus erondinae, a new species of banjo catfish from southern Brazil (Siluriformes: Aspredinidae). Neotrop Ichthyol 8:607–613. doi: 10.1590/S1679-62252010000300005 CrossRefGoogle Scholar
  12. Carvalho TP, Cardoso AR, Friel JP, Reis RE (2015) Two new species of the banjo catfish Bunocephalus Kner (Siluriformes: Aspredinidae) from the upper and middle rio São Francisco basins, Brazil. Neotrop Ichthyol 13:499–512. doi: 10.1590/1982-0224-20140152 CrossRefGoogle Scholar
  13. Centofante L, Bertollo LAC, Moreira-Filho O (2006) Cytogenetic characterization and description of an XX/XY1Y2 sex chromosome system in catfish Harttia carvalhoi (Siluriformes, Loricariidae). Cytogenet Genome Res 112:320–324. doi: 10.1159/000089887 CrossRefPubMedGoogle Scholar
  14. Chalopin D, Volff JN, Galiana D, Anderson JL, Schartl M (2015) Transposable elements and early evolution of sex chromosomes in fish. Chromosome Res 23:545–560. doi: 10.1007/s10577-015-9490-8 CrossRefPubMedGoogle Scholar
  15. Chardon M (1968) Anatomie comparée de l’appareil de Weber et des structures connexes chez les Siluriformes. Annales De Musée Royal De L’Afrique Centrale, Serie IN-8° 169:1–277Google Scholar
  16. Charlesworth B (1996) The evolution of chromosomal sex determination and dosage compensation. Curr Biol 6:149–162. doi: 10.1016/S0960-9822(02)00448-7 CrossRefPubMedGoogle Scholar
  17. Chen X (1994) Phylogentic studies of the amblycipitid catfishes (Teleostei: Siluriformes) with species accounts. Dissertation, Duke University, Durham NCGoogle Scholar
  18. Chen J, Fu Y, Xiang D, Zhao G, Long H, Liu J, Yu Q (2008) XX/XY heteromorphic sex chromosome systems in two bullhead catfish species, Liobagrus marginatus and L. styani (Amblycipitidae, Siluriformes). Cytogenet Genome Res 122:169–174. doi: 10.1159/000163095 CrossRefPubMedGoogle Scholar
  19. Cioffi MB, Bertollo LAC (2010) Initial steps in XY chromosome differentiation in Hoplias malabaricus and the origin of an X1X2Y sex chromosome system in this fish group. Heredity 105:554–561. doi: 10.1038/hdy.2010.18 CrossRefPubMedGoogle Scholar
  20. Cioffi MB, Martins C, Bertollo LAC (2010) Chromosome spreading of associated transposable elements and ribosomal DNA in the fish Erythrinus erythrinus. Implications for genome change and karyoevolution in fish. BMC Evol Biol 10:271. doi: 10.1186/1471-2148-10-271 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Cioffi MB, Camacho JPM, Bertollo LAC (2011) Repetitive DNAs and differentiation of sex chromosomes in neotropical fishes. Cytogenet Genome Res 132:188–194. doi: 10.1159/000321571 CrossRefPubMedGoogle Scholar
  22. de Oliveira RR, Feldberg E, Anjos MB, Zuanon J (2008) Occurrence of multiple sexual chromosomes (XX/XY1Y2 and Z1Z1Z2Z2/Z1Z2W1W2) in catfishes of the genus Ancistrus (Siluriformes: Loricariidae) from the Amazon basin. Genetica 134:243. doi: 10.1007/s10709-007-9231-9 CrossRefPubMedGoogle Scholar
  23. de Oliveira RR, Feldberg E, Anjos MB, Zuanon J (2009) Mechanisms of chromosomal evolution and its possible relation to natural history characteristics in Ancistrus catfishes (Siluriformes: Loricariidae). J Fish Biol 75:2209–2225. doi: 10.1111/j.1095-8649.2009.02450.x CrossRefPubMedGoogle Scholar
  24. de Pinna MCC (1996) A phylogenetic analysis of the Asian catfish families Sisoridae, Akysidae and Amblycipitidae, with a hypothesis on the relationships of the neotropical Asprenidae (Teleostei, Ostariophysi). Fieldiana Zool 84:1–82Google Scholar
  25. Devlin RH, Nagahama Y (2002) Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture 208:191–364. doi: 10.1016/S0044-8486(02)00057-1 CrossRefGoogle Scholar
  26. Diniz D, Bertollo LAC (2003) Karyotypic studies on Hoplerythrynus unitaeniatus (Pisces, Erythrynidae) populations. A biodiversity analysis. Caryologia 56:303–313CrossRefGoogle Scholar
  27. Diogo R, Chardon M, Vandewalle P (2001) Osteology and myology of the cephalic region and pectoral girdle of Bunocephalus knerii, and a discussion on the phylogenetic relationships of the Aspredinidae (Teleostei: Siluriformes). Neth J Zool 51:457–481CrossRefGoogle Scholar
  28. Eler ES, Dergam JA, Venere PC, Paiva LC, Miranda GA, Oliveira AA (2007) The karyotypes of the thorny catfishes Wertheimeria maculate Steindachner, 1877 and Hassar wilderi Kindle, 1895 (Siluriformes: Doradidae) and their relevance in doradids chromosomal evolution. Genetica 130:99–103. doi: 10.1007/s10709-006-0023-4 CrossRefPubMedGoogle Scholar
  29. Eschmeyer WN, Fricke R (eds) (2015) Catalog of fishes: genera, species, References. Electronic version accessed 14 set 2015
  30. Fenerich PC, Foresti F, Oliveira C (2004) Nuclear DNA content in 20 species of Siluriformes (Teleostei: Ostariophysi) from the Neotropical region. Genet Mol Biol 27(3):350–354. doi: 10.1590/S1415-47572004000300008 CrossRefGoogle Scholar
  31. Fenocchio AS, Bertollo LAC (1992) Karyotype, C-bands and NORs of the neotropical siluriform fish Ageneiosus brevifilis and Ageneiosus atronases (Ageneiosidae). Cytobios 72:19–22Google Scholar
  32. Fenocchio AS, Swarça AC (2012) Cytogenetic description of Bunocephalus doriae Boulenger, 1902 (Siluriformes: Aspredinidae) from the Paraná River (Misiones, Argentina). Neotrop Ichthyol 10:461–464. doi: 10.1590/S1679-62252012005000014 CrossRefGoogle Scholar
  33. Fenocchio AS, Jorge LC, Venere PC, Bertollo LAC (1993) Karyotypic characterization and nucleolus organizer regions in three species of Doradidae (Pisces, Siluriformes). Brazil J Genet 4:1097–1101Google Scholar
  34. Fenocchio AS, Pastori MC, Roncati HA, Moreira-Filho O, Bertollo LAC (2003) A cytogenetic survey of the fish fauna from Argentina. Caryologia 56:197–204. doi: 10.1080/00087114.2003.10589325 CrossRefGoogle Scholar
  35. Ferraris CJ Jr (2007) Checklist of catfishes, recent and fossil (Osteichthyes: Siluriformes), and catalogue of siluriform primary types. Zootaxa 1418:1–628Google Scholar
  36. Ferreira M, Kavalco KF, Almeida-Toledo LF, Garcia G (2014) Cryptic diversity between two Imparfinis species (Siluriformes, Heptapteridae) by cytogenetic analysis and DNA barcoding. Zebrafish 11:306–317. doi: 10.1089/zeb.2014.0981 CrossRefPubMedGoogle Scholar
  37. Friel JP (1994) A phylogenetic study of the Neotropical banjo catfishes (Teleostei: Siluriformes: Aspredinidae). Ph.D. Thesis, Duke University, Durham, NCGoogle Scholar
  38. Friel JP (2003) Family Aspredinidae (Banjo catfishes). In: Reis RE, Kullander SO, Ferraris CJ Jr (eds) Checklist of the freshwater fishes of South and Central America. EDIPUCRS, Porto Alegre, pp 261–265Google Scholar
  39. Garcia C, Almeida-Toledo LF (2010) Comparative chromosomal analyses in species of the genus Pimelodella (Siluriformes, Heptapteridae): occurrence of structural and numerical polymorphisms. Caryologia 63:32–40. doi: 10.1080/00087114.2010.10589706 CrossRefGoogle Scholar
  40. Gold JR, Li C, Shipley NS, Powers PK (1990) Improved methods for working with fish chromosomes with a review of metaphase chromosome banding. J Fish Biol 37:563–575. doi: 10.1111/j.1095-8649.1990.tb05889.x CrossRefGoogle Scholar
  41. Gross MC, Schneider CH, Valente GT, Martins C, Feldberg E (2010) Variability of 18S rDNA locus among Symphysodon fishes: chromosomal rearrangements. J Fish Biol 76:1117–1127. doi: 10.1111/j.1095-8649.2010.02550.x CrossRefPubMedGoogle Scholar
  42. Howell WM, Black DA (1980) Controlled silver staining of nucleolus organizer regions with a protective colloidal developer: a 1-step method. Experientia 36:1014–1015. doi: 10.1007/BF01953855 CrossRefPubMedGoogle Scholar
  43. Ijdo JW, Wells RA, Baldini A, Reeders ST (1991) Improved telomere detection using a telomere repeat probe (TTAGGG)n generated by PCR. Nucleic Acids Res 19:4780CrossRefPubMedPubMedCentralGoogle Scholar
  44. Jorge LC, Moreira-Filho O (2000) Cytogenetic studies on Apareiodon affinis (Pisces, Characiformes) from Paraná River basin. Sex chromosomes and polymorphism. Genetica 109:267–273CrossRefPubMedGoogle Scholar
  45. Khuda-Bukhsh AR, Rahman A, Chanda T, Nayak K, Khuda-Bukhsh A (1995) Diploid numbers and chromosome formulae of some 29 species of Indian teleosts (Pisces). Chromosome Inf Serv 58:38–39Google Scholar
  46. Kim DS, Park EH, Kim JS (1982) Karyotypes of nine species of the Korean catfishes (Teleostomi: Siluriformes). Korean J Genet 4:57–68Google Scholar
  47. Klinkhardt M (1998) Some aspects of karyoevolution in fishes. Anim Res Dev 47:7–36Google Scholar
  48. Levan A, Fredga K, Sandberg AA (1964) Nomenclature for centromeric position on chromosomes. Hereditas 52:201–220. doi: 10.1111/j.1601-5223.1964.tb01953.x CrossRefGoogle Scholar
  49. Li SS, Wang RF, Liu GZ, Wang YX, Li CY (1981) A karyotype study of Coreglanis kishinouyei and Euchiloglanis davidi. Trans Chin Ichthyol Soc 2:153–157Google Scholar
  50. Lui RL, Blanco DR, Margarido VP, Moreira-Filho O (2010) Chromosome characterization and biogeographic relations among three populations of the driftwood catfish Parauchenipterus galaetus (Linnaeus, 1766) (Siluriformes: Auchenipteridae) in Brazil. Biol J Linn Soc 99:648–656. doi: 10.1111/j.1095-8312.2009.01389.x CrossRefGoogle Scholar
  51. Lui RL, Blanco DR, Margarido VP, Troy WP, Moreira-Filho O (2013) Comparative chromosomal analysis and evolutionary considerations concerning two species of genus Tatia (Siluriformes, Auchenipteridae). Comp Cytogenet 7:63–71. doi: 10.3897/CompCytogen.v7i1.4368 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Maneechot N, Supiwong W, Tanomtong A (2014) Chromosomal analysis and NORs polymorphism of Bagarius suchus (Siluriformes: Sisoridae) by conventional banding and FISH techniques. Full Paper Proc ETAR 1:46–59Google Scholar
  53. Mariotto S, Miyazawa CS (2006) Ancistrus cf. dubius (Siluriformes, Ancistrinae), a complex of species. 1. Chromosomic characterization of four populations and occurrence of sexual chromosomes of type XX/XY, in the Pantanal basin of Mato Grosso, Brazil. Caryologia 59:299–304. doi: 10.1080/00087114.2006.10797929 CrossRefGoogle Scholar
  54. Mariotto S, Centofante L, Vicari MR, Artoni RF, Moreira-Filho O (2011) Chromosomal diversification in ribosomal DNA sites in Ancistrus Kner, 1854 (Loricariidae, Ancistrini) from three hydrographic basins of Mato Grosso, Brazil. Comp Cytogenet 5:289–300. doi: 10.3897/compcytogen.v5i4.1757 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Marquioni V, Bertollo LAC, Diniz D, Cioffi MB (2013) Comparative chromosomal mapping in Triportheus fish species. Analysis of synteny between ribosomal genes. Micron 45:129–135. doi: 10.1016/j.micron.2012.11.008 CrossRefPubMedGoogle Scholar
  56. Martins C (2007) Chromosomes and repetitive DNAs: a contribution to the knowledge of fish genome. In: Pisano E, Ozouf-Costaz C, Foresti F, Kapoor BG (eds) Fish cytogenetics. Science Publisher, New Hampshire, pp 421–453Google Scholar
  57. Martins C, Galetti PM Jr (1999) Chromosomal localization of 5S rDNA genes in Leporinus fish (Anostomidae, Characiformes). Chromosome Res 7:363–367. doi: 10.1023/A:1009216030316 CrossRefPubMedGoogle Scholar
  58. Martins NF, Bertollo LAC, Troy WP, Feldberg E, Valentin FCS, Cioffi MB (2013) Differentiation and evolutionary relationships in Erythrinus erythrinus (Characiformes, Erythrinidae): comparative chromosome mapping of repetitive sequences. Rev Fish Biol Fish 23:261–269. doi: 10.1007/s11160-012-9292-4 CrossRefGoogle Scholar
  59. Milhomem SSR, Souza ACP, Nascimento AL, Carvalho JR Jr, Feldberg E, Pieczarka JC, Nagamachi CY (2008) Cytogenetic studies in fishes of the genera Hassar, Platydoras and Opsodoras (Doradidae, Siluriformes) from Jarí and Xingú Rivers, Brazil. Genet Mol Biol 31:256–260. doi: 10.1590/S1415-47572008000200017 CrossRefGoogle Scholar
  60. Moreira-Filho O, Bertollo LAC (1991) Astyanax scabripinnis (Pisces, Characidae): a species complex. Brazil J Genet 14:331–357Google Scholar
  61. Moreira-Filho O, Lac Bertollo, Galetti PM Jr (1980) Evidences for a multiple sex chromosome system with female heterogamety in Apareiodon affinis (Pisces, Parodontidae). Caryologia 33:83–91CrossRefGoogle Scholar
  62. Moreira-Filho O, Bertollo LAC, Galetti PM Jr (1993) Distribution of sex chromosome mechanisms in neotropical fish and description of a ZZ/ZW system in Parodon hilarii (Parodontidae). Caryologia 46(2–3):115–125. doi: 10.1080/00087114.1993.10797253 CrossRefGoogle Scholar
  63. Myers GS (1960) The genera and ecological geography of the South American banjo catfishes, family Aspredinidae. Stanford Ichthyol Bull 7:132–139Google Scholar
  64. Nakayama CM, Jegu M, Porto JIR, Feldberg E (2001) Karyological evidence for cryptic species of piranha within Serrasalmus rhombeus (Characidae, Serrasalminae) in the Amazon. Copeia 2001:866–869. doi: 10.1643/0045-8511(2001)001[0866:KEFACS]2.0.CO;2
  65. Oliveira C, Gosztonyi AE (2000) A cytogenetic study of Diplomystes mesembrinus (Teleostei, Siluriformes, Diplomystidae) with a discussion of chromosome evolution in Siluriforms. Caryologia 53:31–37. doi: 10.1080/00087114.2000.10589178 CrossRefGoogle Scholar
  66. Pazza R, Kavalco KF, Bertollo LAC (2006) Chromosome polymorphism in Astyanax fasciatus (Teleostei, Characidae). 1. Karyotype analysis, Ag-NORs and mapping of the 18S and 5S ribosomal genes in sympatric karyotypes and their possible hybrid forms. Cytogenet Genome Res 112:313–319. doi: 10.1159/000089886 CrossRefPubMedGoogle Scholar
  67. Pinkel D, Straume T, Gray JW (1986) Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization. Proc Natl Acad Sci 83:2034–2038. doi: 10.1073/pnas.83.9.2934 CrossRefGoogle Scholar
  68. Porto FE, Vieira MMR, Barbosa LM, Borin LA, Vicari MR, Portela-Castro ALB, Martins-Santos IC (2014) Chromosomal polymorphism in Rineloricaria lanceolata Günther, 1868 (Loricariidae: Loricariinae) of the Paraguay Basin (Mato Grosso do Sul, Brazil): evidence of fusions and their consequences in the population. Zebrafish 11:318–324. doi: 10.1089/zeb.2014.0996 CrossRefPubMedGoogle Scholar
  69. Ravedutti CG, Julio HF Jr (2001) Cytogenetic analysis of three species of the neotropical family Auchenipteridae (Pisces, Siluriformes) from the Parana River basin, Brazil. Cytologia 66:65–70. doi: 10.1508/cytologia.66.65 CrossRefGoogle Scholar
  70. Ribeiro LB, Matoso DA, Feldberg E (2014) Chromosome mapping of repetitive sequences in four serrasalmidae species (Serrasalmidae, Characiformes). Genet Mol Biol 37:46–53. doi: 10.1590/S1415-47572014000100009 CrossRefPubMedGoogle Scholar
  71. Rishi KK (1976) Karyotypic studies on four species of fish. Nucleus Calcutta 19:95–98Google Scholar
  72. Rishi KK, Shashikala S, Rishi S (1998) Karyotype study on six Indian hill-stream fishes. Chromosome Sci 2:9–13Google Scholar
  73. Schneider CH, Gross MC, Terencio ML, Carmo EJ, Martins C, Feldberg E (2013) Evolutionary dynamics of retrotransposable elements Rex1, Rex3 and Rex6 in neotropical cichlid genomes. BMC Evol Biol 13:152. doi: 10.1186/1471-2148-13-152 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Son YM, Lee JH (1989) Karyotypes of genus Liobagrus (Pisces: Amblycipitidae) in Korea. Korean J Ichthyol 1:64–72Google Scholar
  75. Sullivan JP, Lundberg JG, Hardman M (2006) A phylogenetic analysis of the major groups of catfishes (Teleostei, Siluriformes) using rag 1 and rag 2 nuclear gene sequences. Mol Phylogenet Evol 41:636–662. doi: 10.1016/j.ympev.2006.05.044 CrossRefPubMedGoogle Scholar
  76. Sumner AT (1972) A simple technique for demonstrating centromeric heterocromatin. Exp Cell Res 75:304–306. doi: 10.1016/0014-4827(72)90558-7 CrossRefPubMedGoogle Scholar
  77. Terencio ML, Schneider CH, Gross MC, Carmo EJ, Nogaroto V, Almeida MC, Artoni FR, Vicari MR, Feldberg E (2015) Repetitive sequences: the hidden diversity of heterochromatin in prochilodontid fish. Comp Cytogenet 9:465–481. doi: 10.3897/CompCytogen.v9i4.5299 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Vissotto PC, Foresti F, Oliveira F (1997) A ZZ/ZW Sex Chromosome System in lmparfinis mirini (Pisces, Siluriformes). Cytologia 62:61–66. doi: 10.1508/cytologia.62.61 CrossRefGoogle Scholar
  79. Ziemniczak K, Barros AV, Rosa KO, Nogaroto V, Almeida MC, Cestari MM, Moreira-Filho O, Artoni RF, Vicari MR (2012) Comparative cytogenetics of Loricariidae (Actinopterygii: Siluriformes): emphasis in Neoplecostominae and Hypoptopomatinae. Ital J Zool 79:1–10. doi: 10.1080/11250003.2012.676677 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Milena Ferreira
    • 1
  • Caroline Garcia
    • 2
  • Daniele Aparecida Matoso
    • 3
  • Isac Silva de Jesus
    • 4
  • Eliana Feldberg
    • 1
  1. 1.Animal Genetics Laboratory, Biodiversity CoordinationNational Institute of Amazonian ResearchManausBrazil
  2. 2.Cytogenetics Laboratory, Biological Sciences DepartmentState University of Southwest BahiaJequiéBrazil
  3. 3.Biological Sciences Institute, Genetics DepartmentAmazonas Federal UniversityManausBrazil
  4. 4.Behavior Physiology and Evolution Laboratory, Biodiversity CoordinationNational Institute of Amazonian ResearchManausBrazil

Personalised recommendations