Advertisement

Genetica

, Volume 144, Issue 3, pp 335–339 | Cite as

A comparative cytogenetic study of Drosophila parasitoids (Hymenoptera, Figitidae) using DNA-binding fluorochromes and FISH with 45S rDNA probe

  • Vladimir E. Gokhman
  • Nadezhda L. Bolsheva
  • Shubha Govind
  • Olga V. Muravenko
Article

Abstract

Karyotypes of Leptopilina boulardi (Barbotin, Carton et Keiner-Pillault, 1979) (n = 9), L. heterotoma (Thomson, 1862) (n = 10), L. victoriae Nordlander, 1980 (n = 10) and Ganaspis xanthopoda (Ashmead, 1896) (n = 9) (Hymenoptera, Figitidae) were studied using DNA-binding ligands with different base specificity [propidium iodide (PI), chromomycin A3 (CMA3) and 4′,6-diamidino-2-phenylindole (DAPI)], and fluorescence in situ hybridization (FISH) with a 45S rDNA probe. Fluorochrome staining was similar between the different fluorochromes, except for a single CMA3- and PI-positive and DAPI-negative band per haploid karyotype of each species. FISH with 45S rDNA probe detected a single rDNA site in place of the bright CMA3-positive band, thus identifying the nucleolus organizing region (NOR). Chromosomal locations of NORs were similar for both L. heterotoma and L. victoriae, but strongly differed in L. boulardi as well as in G. xanthopoda. Phylogenetic aspects of NOR localization in all studied species are briefly discussed.

Keywords

Hymenoptera Figitidae Karyotypes DNA-binding fluorochromes FISH 45S rDNA 

Notes

Acknowledgments

We are grateful to Roma Rajwani for maintaining the laboratory stocks of parasitoids used in this study. The present work was supported by funds from the Russian Foundation for Basic Research (15-04-07709 to VEG, 14-08-01167 and 16-04-01239 to NLB and OVM) as well as from National Science Foundation (1121817), National Institute on Minority Health and Health Disparities (5G12MD007603-30) and National Aeronautical Space Agency (NNX15AB42G) to SG. The content does not represent the official views of the National Institute on Minority Health and Health Disparities or the National Institutes of Health.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Aguiar AP, Deans AR, Engel MS, Forshage M, Huber JT, Jennings JT, Johnson NF, Lelej AS, Longino JT, Lohrmann V, Mikó I, Ohl M, Rasmussen C, Taeger A, Yu DSK (2013) Order Hymenoptera. Zootaxa 3703(1):51–62. doi: 10.11646/zootaxa.3703.1.12 CrossRefGoogle Scholar
  2. Allemand R, Lemaître C, Frey F, Boulétreau M, Vavre F, Nordlander G, van Alphen J, Carton Y (2002) Phylogeny of six African Leptopilina species (Hymenoptera: Cynipoidea, Figitidae), parasitoids of Drosophila, with description of three new species. Ann Soc Entomol Fr 38:319–332. doi: 10.1080/00379271.2002.10697346 Google Scholar
  3. Bolsheva NL, Gokhman VE, Muravenko OV, Gumovsky AV, Zelenin AV (2012) Comparative cytogenetic study on two species of the genus Entedon Dalman, 1820 (Hymenoptera: Eulophidae) using DNA-binding fluorochromes and molecular and immunofluorescent markers. Comp Cytogenet 6(1):79–92. doi: 10.3897/compcytogen.v6i1.2349 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Colinet D, Deleury E, Anselme C, Cazes D, Poulain J, Azema-Dossat C, Belghazi M, Gatti JL, Poirié M (2013) Extensive inter- and intraspecific venom variation in closely related parasites targeting the same host: the case of Leptopilina parasitoids of Drosophila. Insect Biochem Mol Biol 43(7):601–611. doi: 10.1016/j.ibmb.2013.03.010 CrossRefPubMedGoogle Scholar
  5. Elsik CG, Tayal A, Diesh CM, Unni DR, Emery ML, Nguyen HN, Hagen DE (2016) Hymenoptera Genome Database: integrating genome annotations in HymenopteraMine. Nucleic Acids Research 44(Database issue): D793–D800. doi: 10.1093/nar/gkv1208
  6. Evans JD, Brown SJ, Hackett KJ et al (2013) The i5K initiative: advancing arthropod genomics for knowledge, human health, agriculture, and the environment. J Hered 104(5):595–600. doi: 10.1093/jhered/est050 CrossRefGoogle Scholar
  7. Gauld ID, Bolton B (1988) The Hymenoptera. British Museum (Natural History). Oxford University Press, Oxford, XI + 332 ppGoogle Scholar
  8. Gerlach WL, Bedbrook JR (1979) Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res 7:1869–1885. doi: 10.1093/nar/7.7.1869 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Goecks J, Mortimer NT, Mobley JA, Bowersock GJ, Taylor J, Schlenke TA (2013) Integrative approach reveals composition of endoparasitoid wasp venoms. PLoS ONE 8(5):e64125. doi: 10.1371/journal.pone.0064125 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Gokhman VE (2009) Karyotypes of parasitic Hymenoptera. Springer, Dordrecht, XIII + 183 pp. doi: 10.1007/978-1-4020-9807-9
  11. Gokhman VE, Johnston JS, Small C, Rajwani R, Hanrahan SJ, Govind S (2011) Genomic and karyotypic variation in Drosophila parasitoids (Hymenoptera, Cynipoidea, Figitidae). Comp Cytogenet 5(3):211–221. doi: 10.3897/compcytogen.v5i3.1435 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Gokhman VE, Anokhin BA, Kuznetsova VG (2014) Distribution of 18S rDNA sites and absence of the canonical TTAGG insect telomeric repeat in parasitoid Hymenoptera. Genetica 142(4):317–322. doi: 10.1007/s10709-014-9776-3 CrossRefPubMedGoogle Scholar
  13. Heavner ME, Gueguen G, Rajwani R, Pagan PE, Small C, Govind S (2013) Partial venom gland transcriptome of a Drosophila parasitoid wasp, Leptopilina heterotoma, reveals novel and shared bioactive profiles with stinging Hymenoptera. Gene 526:195–204. doi: 10.1016/j.gene.2013.04.080 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Imai HT, Taylor RW, Crosland MWJ, Crozier RH (1988) Modes of spontaneous chromosomal mutation and karyotype evolution in ants with reference to the minimum interaction hypothesis. Jpn J Genet 63:159–185. doi: 10.1266/jjg.63.159 CrossRefPubMedGoogle Scholar
  15. Kim ES, Punina EO, Rodionov AV (2002) Chromosome CPD(PI/DAPI)- and CMA/DAPI-banding patterns in Allium cepa L. Russ J Genet 38(4):392–398. doi: 10.1023/a:1015250219322 CrossRefGoogle Scholar
  16. Melk JP, Govind S (1999) Developmental analysis of Ganaspis xanthopoda, a larval parasitoid of Drosophila melanogaster. J Exp Biol 202:1885–1896PubMedGoogle Scholar
  17. Mortimer NT, Goecks J, Kacsoh BZ, Mobley JA, Bowersock GJ, Taylor J, Schlenke TA (2013) Parasitoid wasp venom SERCA regulates Drosophila calcium levels and inhibits cellular immunity. Proc Natl Acad Sci USA 110(23):9427–9432. doi: 10.1073/pnas.1222351110 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Schweizer D, Ambros PF (1994) Chromosome banding. Stain combinations for specific regions. Methods Mol Biol 29:97–112. doi: 10.1385/0-89603-289-2:97 PubMedGoogle Scholar
  19. Small C, Paddibhatla I, Rajwani R, Govind S (2012) An introduction to parasitic wasps of Drosophila and the antiparasite immune response. J Vis Exp 63:e3347. doi: 10.3791/3347 PubMedGoogle Scholar
  20. The Nasonia Genome Working Group (2010) Functional and evolutionary insights from the genomes of three parasitoid Nasonia species. Science 327(5963):343–348. doi: 10.1126/science.1178028 CrossRefPubMedCentralGoogle Scholar
  21. Treangen TJ, Salzberg SL (2011) Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat Rev Genet 13(1):36–46. doi: 10.1038/nrg3117 PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Vladimir E. Gokhman
    • 1
  • Nadezhda L. Bolsheva
    • 2
  • Shubha Govind
    • 3
  • Olga V. Muravenko
    • 2
  1. 1.Botanical GardenMoscow State UniversityMoscowRussia
  2. 2.Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia
  3. 3.Biology Department MR526The City College of the City University of New YorkNew YorkUSA

Personalised recommendations