, Volume 143, Issue 1, pp 101–112 | Cite as

Characterisation of Toll-like receptors 4, 5 and 7 and their genetic variation in the grey partridge

  • Michal VinklerEmail author
  • Hana Bainová
  • Anna Bryjová
  • Oldřich Tomášek
  • Tomáš Albrecht
  • Josef Bryja


Toll-like receptors (TLRs) are a cornerstone of vertebrate innate immunity. In this study, we identified orthologues of TLR4, TLR5 and TLR7 (representing both bacterial- and viral-sensing TLRs) in the grey partridge (Perdix perdix), a European Galliform game bird species. The phylogeny of all three TLR genes follows the known phylogeny of Galloanserae birds, placing grey partridge TLRs (PePeTLRs) in close proximity to their turkey and pheasant orthologues. The predicted proteins encoded by the PePeTLR genes were 843, 862–863 and 1,047 amino acids long, respectively, and clearly showed all TLR structural features. To verify functionality in these genes we mapped their tissue-expression profiles, revealing generally high PePeTLR4 and PePeTLR5 expression in the thymus and absence of PePeTLR4 and PePeTLR7 expression in the brain. Using 454 next-generation sequencing, we then assessed genetic variation within these genes for a wild grey partridge population in the Czech Republic, EU. We identified 11 nucleotide substitutions in PePeTLR4, eight in PePeTLR5 and six in PePeTLR7, resulting in four, four and three amino acid replacements, respectively. Given their locations and chemical features, most of these non-synonymous substitutions probably have a minor functional impact. As the intraspecific genetic variation of the three TLR genes was low, we assume that either negative selection or a bottleneck may have reduced TLR population variability in this species.


Gene transcription Pattern recognition receptors Polymorphism Population decrease Protein structure Variability reduction 



We would like to express our gratitude to Eva Holánová, Zdeňka Csibreiová, Miroslav Šálek, Jana Svobodová, Jitka Vinklerová, Dagmar Vinklerová and Kevin F. Roche for their help and advice. This study was supported by the Czech Science Foundation (Projects 206/08/1281, P505/10/1871 and P502/12/P179), the Ministry of Education, Youth and Sport of the Czech Republic within the NextGenProject (CZ.1.07/2.3.00/20.0303) and Institutional Research Support Grant SVV 260 087/2014. The authors contributed as follows: MV (25 %)—study design, main role in manuscript preparation; HB (25 %)—laboratory analysis, protein structure analysis; AB (25 %)—laboratory analysis; OT (10 %)—laboratory analysis; TA (5 %)—genetic sample collection; JB (10 %)—phylogenetic analysis. All authors contributed to the manuscript preparation.

Supplementary material

10709_2015_9819_MOESM1_ESM.pdf (883 kb)
Supplementary material 1 (PDF 883 kb)


  1. Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124:783–801. doi: 10.1016/j.cell.2006.02.015 PubMedCrossRefGoogle Scholar
  2. Alcaide M, Edwards SV (2011) Molecular evolution of the Toll-like receptor multigene family in birds. Mol Biol Evol 28:1703–1715. doi: 10.1093/molbev/msq351 PubMedCrossRefGoogle Scholar
  3. Andersen LW, Kahlert J (2012) Genetic indications of translocated and stocked grey partridges (Perdix perdix): does the indigenous Danish grey partridge still exist? Biol J Lin Soc 105:694–710. doi: 10.1111/j.1095-8312.2011.01833.x CrossRefGoogle Scholar
  4. Andersen-Nissen E, Smith KD, Bonneau R, Strong RK, Aderem A (2007) A conserved surface on Toll-like receptor 5 recognizes bacterial flagellin. J Exp Med 204:393–403. doi: 10.1084/jem.20061400 PubMedCentralPubMedCrossRefGoogle Scholar
  5. Bainova H, Kralova T, Bryjova A, Albrecht T, Bryja J et al (2014) First evidence of independent pseudogenization of Toll-like receptor 5 in passerine birds. Dev Comp Immunol 45:151–155. doi: 10.1016/j.dci.2014.02.010 PubMedCrossRefGoogle Scholar
  6. Bao XK, Liu NF, Qu JY, Wang XL, An B et al (2010) The phylogenetic position and speciation dynamics of the genus Perdix (Phasianidae, Galliformes). Mol Phylogenet Evol 56:840–847. doi: 10.1016/j.ympev.2010.03.038 PubMedCrossRefGoogle Scholar
  7. Beani L, Dessifulgheri F (1995) Mate choice in the grey partridge, Perdix perdix—role of physical and behavioral male traits. Anim Behav 49:347–356. doi: 10.1006/anbe.1995.0047 CrossRefGoogle Scholar
  8. Bell JK, Mullen GED, Leifer CA, Mazzoni A, Davies DR et al (2003) Leucine-rich repeats and pathogen recognition in Toll-like receptors. Trends Immunol 24:528–533. doi: 10.1016/s1471-4906(03)00242-4 PubMedCrossRefGoogle Scholar
  9. Bonilla AJ, Braun EL, Kimball RT (2010) Comparative molecular evolution and phylogenetic utility of 3′-UTRs and introns in Galliformes. Mol Phylogenet Evol 56:536–542. doi: 10.1016/j.ympev.2010.04.006 PubMedCrossRefGoogle Scholar
  10. Brownlie R, Allan B (2011) Avian Toll-like receptors. Cell Tissue Res 343:121–130. doi: 10.1007/s00441-010-1026-0 PubMedCrossRefGoogle Scholar
  11. Brownlie R, Zhu JZ, Allan B, Mutwiri GK, Babiuk LA et al (2009) Chicken TLR21 acts as a functional homologue to mammalian TLR9 in the recognition of CpG oligodeoxynucleotides. Mol Immunol 46:3163–3170. doi: 10.1016/j.molimm.2009.06.002 PubMedCrossRefGoogle Scholar
  12. Buner FD, Browne SJ, Aebischer NJ (2011) Experimental assessment of release methods for the re-establishment of a red-listed galliform, the grey partridge (Perdix perdix). Biol Conserv 144:593–601. doi: 10.1016/j.biocon.2010.10.017 CrossRefGoogle Scholar
  13. Cormican P, Lloyd AT, Downing T, Connell SJ, Bradley D et al (2009) The avian Toll-like receptor pathway—subtle differences amidst general conformity. Dev Comp Immunol 33:967–973. doi: 10.1016/j.dci.2009.04.001 PubMedCrossRefGoogle Scholar
  14. Cserzo M, Eisenhaber F, Eisenhaber B, Simon I (2004) TM or not TM: transmembrane protein prediction with low false positive rate using DAS-TMfilter. Bioinformatics 20:136–137. doi: 10.1093/bioinformatics/btg394 PubMedCrossRefGoogle Scholar
  15. Cucco M, Malacarne G, Ottonelli R, Patrone M (2006) Repeatability of cell-mediated and innate immunity, and other fitness-related traits, in the Grey Partridge. Can J Zool Rev Can Zool 84:72–79CrossRefGoogle Scholar
  16. Cucco M, Guasco B, Malacarne G, Ottonelli R (2007) Effects of beta-carotene on adult immune condition and antibacterial activity in the eggs of the Grey Partridge, Perdix perdix. Comp Biochem Physiol A Mol Integr Physiol 147:1038–1046. doi: 10.1016/j.cbpa.2007.03.014 PubMedCrossRefGoogle Scholar
  17. Dalloul RA, Long JA, Zimin AV, Aslam L, Beal K et al (2010) Multi-platform next-generation sequencing of the domestic turkey (Meleagris gallopavo): genome assembly and analysis. PLoS Biol. doi: 10.1371/journal.pbio.1000475 PubMedCentralPubMedGoogle Scholar
  18. De Leo GA, Focardi S, Gatto M, Cattadori IM (2004) The decline of the grey partridge in Europe: comparing demographies in traditional and modern agricultural landscapes. Ecol Model 177:313–335. doi: 10.1016/j.ecolmodel.2003.11.017 CrossRefGoogle Scholar
  19. Downing T, Lloyd AT, O’Farrelly C, Bradley DG (2010) The differential evolutionary dynamics of avian cytokine and TLR gene classes. J Immunol 184:6993–7000. doi: 10.4049/jimmunol.0903092 PubMedCrossRefGoogle Scholar
  20. Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol. doi: 10.1186/1471-2148-7-214 PubMedCentralPubMedGoogle Scholar
  21. Elfeil WK, Abouelmaatti RR, Sun CJ, Han WY, Li XK et al (2012) Identification, cloning, expression of a novel functional Anas platyrhynchos mRNA TLR4. J Anim Vet Adv 11:1727–1733. doi: 10.3923/javaa.2012.1727.1733 CrossRefGoogle Scholar
  22. Ewald SE, Lee BL, Lau L, Wickliffe KE, Shi G-P et al (2008) The ectodomain of Toll-like receptor 9 is cleaved to generate a functional receptor. Nature 456:658–662. doi: 10.1038/nature07405 PubMedCentralPubMedCrossRefGoogle Scholar
  23. Fang Q, Pan ZM, Geng SZ, Kang XL, Huang JL et al (2012) Molecular cloning, characterization and expression of goose Toll-like receptor 5. Mol Immunol 52:117–124. doi: 10.1016/j.molimm.2012.05.005 PubMedCrossRefGoogle Scholar
  24. Fukui A, Inoue N, Matsumoto M, Nomura M, Yamada K et al (2001) Molecular cloning and functional characterization of chicken Toll-like receptors—a single chicken toll covers multiple molecular patterns. J Biol Chem 276:47143–47149PubMedCrossRefGoogle Scholar
  25. Gopinath VP, Biswas M, Raj GD, Raja A, Kumanan K et al (2011) Molecular cloning and tissue-specific expression of Toll-like receptor 5 gene from turkeys. Avian Dis 55:480–485PubMedCrossRefGoogle Scholar
  26. Grueber CE, Wallis GP, King TM, Jamieson IG (2012) Variation at innate immunity Toll-like receptor genes in a bottlenecked population of a New Zealand robin. PLoS ONE. doi: 10.1371/journal.pone.0045011 PubMedCentralPubMedGoogle Scholar
  27. Grueber CE, Wallis GP, Jamieson IG (2014) Episodic positive selection in the evolution of avian Toll-like receptor innate immunity genes. PLoS ONE 9:e89632. doi: 10.1371/journal.pone.0089632 PubMedCentralPubMedCrossRefGoogle Scholar
  28. Guindon S, Lethiec F, Duroux P, Gascuel O (2005) PHYML Online—a web server for fast maximum likelihood-based phylogenetic inference. Nucleic Acids Res 33:W557–W559. doi: 10.1093/nar/gki352 PubMedCentralPubMedCrossRefGoogle Scholar
  29. Hackett SJ, Kimball RT, Reddy S, Bowie RCK, Braun EL et al (2008) A phylogenomic study of birds reveals their evolutionary history. Science 320:1763–1768. doi: 10.1126/science.1157704 PubMedCrossRefGoogle Scholar
  30. Horigan V, Davies RH, Kelly LA, Mead GC, Irvine RM et al (2014) A qualitative risk assessment of the microbiological risks to consumers from the production and consumption of uneviscerated and eviscerated small game birds in the UK. Food Control 45:127–137. doi: 10.1016/j.foodcont.2014.04.040 CrossRefGoogle Scholar
  31. Huang YH, Temperley ND, Ren LM, Smith J, Li N et al (2011) Molecular evolution of the vertebrate TLR1 gene family—a complex history of gene duplication, gene conversion, positive selection and co-evolution. BMC Evol Biol. doi: 10.1186/1471-2148-11-149 Google Scholar
  32. Iqbal M, Philbin VJ, Smith AL (2005) Expression patterns of chicken Toll-like receptor mRNA in tissues, immune cell subsets and cell lines. Vet Immunol Immunopathol 104:117–127. doi: 10.1016/j.vetimm.2004.11.003 PubMedCrossRefGoogle Scholar
  33. Iwasaki A, Medzhitov R (2010) Regulation of adaptive immunity by the innate immune system. Science 327:291–295. doi: 10.1126/science.1183021 PubMedCentralPubMedCrossRefGoogle Scholar
  34. Jetz W, Thomas GH, Joy JB, Hartmann K, Mooers AO (2012) The global diversity of birds in space and time. Nature 491:444–448. doi: 10.1038/nature11631 PubMedCrossRefGoogle Scholar
  35. Jia H, Li G, Li J, Tian Y, Wang D et al (2012) Cloning, expression and bioinformatics analysis of the duck TLR 4 gene. Br Poult Sci 53:190–197. doi: 10.1080/00071668.2012.674208 PubMedCrossRefGoogle Scholar
  36. Jiang Q, Turner T, Sosa MX, Rakha A, Arnold S et al (2012) Rapid and efficient human mutation detection using a bench-top next-generation DNA sequencer. Hum Mutat 33:281–289. doi: 10.1002/humu.21602 PubMedCentralPubMedCrossRefGoogle Scholar
  37. Keestra AM, van Putten JPM (2008) Unique properties of the chicken TLR4/MD-2 complex: selective lipopolysaccharide activation of the MyD88-dependent pathway. J Immunol 181:4354–4362PubMedCrossRefGoogle Scholar
  38. Keestra AM, de Zoete MR, van Aubel RAMH, van Putten JPM (2008) Functional characterization of chicken TLR5 reveals species-specific recognition of flagellin. Mol Immunol 45:1298–1307. doi: 10.1016/j.molimm.2007.09.013 PubMedCrossRefGoogle Scholar
  39. Keestra AM, de Zoete MR, Bouwman LI, Vaezirad MM, van Putten JPM (2013) Unique features of chicken toll-like receptors. Dev Comp Immunol 41:316–323. doi: 10.1016/j.dci.2013.04.009 PubMedCrossRefGoogle Scholar
  40. Kim HM, Park BS, Kim JI, Kim SE, Lee J et al (2007) Crystal structure of the TLR4-MD-2 complex with bound endotoxin antagonist eritoran. Cell 130:906–917. doi: 10.1016/j.cell.2007.08.002 PubMedCrossRefGoogle Scholar
  41. Kosakovsky Pond SL, Posada D, Gravenor MB, Woelk CH, Frost SDW (2006) Automated phylogenetic detection of recombination using a genetic algorithm. Mol Biol Evol 23:1891–1901. doi: 10.1093/molbev/msl051 PubMedCrossRefGoogle Scholar
  42. Kuijper DPJ, Oosterveld E, Wymenga E (2009) Decline and potential recovery of the European grey partridge (Perdix perdix) population—a review. Eur J Wildl Res 55:455–463. doi: 10.1007/s10344-009-0311-2 CrossRefGoogle Scholar
  43. Letunic I, Doerks T, Bork P (2012) SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Res 40:D302–D305. doi: 10.1093/nar/gkr931 PubMedCentralPubMedCrossRefGoogle Scholar
  44. Leveque G, Forgetta V, Morroll S, Smith AL, Bumstead N et al (2003) Allelic variation in TLR4 is linked to susceptibility to Salmonella enterica serovar typhimurium infection in chickens. Infect Immun 71:1116–1124. doi: 10.1128/IAI.71.3.1116-1124.2003 PubMedCentralPubMedCrossRefGoogle Scholar
  45. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452. doi: 10.1093/bioinformatics/btp187 PubMedCrossRefGoogle Scholar
  46. Liu Y, Chang GB, Hu GS, Li Q, Xu Q et al (2011) Genetic variation at Exon2 of TLR4 gene and its association with resistant traits in chicken. Afr J Biotechnol 10:8260–8266CrossRefGoogle Scholar
  47. Lynn DJ, Lloyd AT, O’Farrelly C (2003) In silico identification of components of the Toll-like receptor (TLR) signaling pathway in clustered chicken expressed sequence tags (ESTs). Vet Immunol Immunopathol 93:177–184. doi: 10.1016/S0165-2427(03)00058-8 PubMedCrossRefGoogle Scholar
  48. MacDonald MRW, Xia JG, Smith AL, Magor KE (2008) The duck Toll like receptor 7: genomic organization, expression and function. Mol Immunol 45:2055–2061. doi: 10.1016/j.molimm.2007.10.018 PubMedCrossRefGoogle Scholar
  49. McGuffin LJ (2008) The ModFOLD server for the quality assessment of protein structural models. Bioinformatics 24:586–587. doi: 10.1093/bioinformatics/btn014 PubMedCrossRefGoogle Scholar
  50. Offord V, Coffey TJ, Werling D (2010) LRRfinder: a web application for the identification of leucine-rich repeats and an integrative Toll-like receptor database. Dev Comp Immunol 34:1035–1041. doi: 10.1016/j.dci.2010.05.004 PubMedCrossRefGoogle Scholar
  51. Ohto U, Fukase K, Miyake K, Shimizu T (2012) Structural basis of species-specific endotoxin sensing by innate immune receptor TLR4/MD-2. Proc Natl Acad Sci USA 109:7421–7426. doi: 10.1073/pnas.1201193109 PubMedCentralPubMedCrossRefGoogle Scholar
  52. Palsson-McDermott EM, O’Neill LAJ (2007) Building an immune system from nine domains. Biochem Soc Trans 35:1437–1444. doi: 10.1042/BST0351437 PubMedCrossRefGoogle Scholar
  53. Park BS, Song DH, Kim HM, Choi BS, Lee H et al (2009) The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature 458:1191–1195. doi: 10.1038/nature07830 PubMedCrossRefGoogle Scholar
  54. Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786. doi: 10.1038/nmeth.1701 PubMedCrossRefGoogle Scholar
  55. Philbin VJ, Iqbal M, Boyd Y, Goodchild MJ, Beal RK et al (2005) Identification and characterization of a functional, alternatively spliced Toll-like receptor 7 (TLR7) and genomic disruption of TLR8 in chickens. Immunology 114:507–521. doi: 10.1111/j.1365-2567.2005.02125.x PubMedCentralPubMedCrossRefGoogle Scholar
  56. Ramasamy KT, Verma P, Reddy MR, Murugesan S (2011) Molecular characterization of coding sequence and mRNA expression pattern of Toll-like receptor 15 in Japanese quail (Coturnix japonica) and indigenous chicken breeds (Aseel and Kadaknath). J Poult Sci 48:168–175. doi: 10.2141/jpsa.011008 CrossRefGoogle Scholar
  57. Ramasamy KT, Reddy MR, Verma PC, Murugesan S (2012) Expression analysis of turkey (Meleagris gallopavo) toll-like receptors and molecular characterization of avian specific TLR15. Mol Biol Rep 39:8539–8549. doi: 10.1007/s11033-012-1709-6 PubMedCrossRefGoogle Scholar
  58. Resman N, Vasl J, Oblak A, Pristovsek P, Gioannini TL et al (2009) Essential roles of hydrophobic residues in both MD-2 and Toll-like receptor 4 in activation by endotoxin. J Biol Chem 284:15052–15060. doi: 10.1074/jbc.M901429200 PubMedCentralPubMedCrossRefGoogle Scholar
  59. Roach JC, Glusman G, Rowen L, Kaur A, Purcell MK et al (2005) The evolution of vertebrate toll-like receptors. Proc Natl Acad Sci USA 102:9577–9582. doi: 10.1073/pnas.0502272102 PubMedCentralPubMedCrossRefGoogle Scholar
  60. Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5:725–738. doi: 10.1038/nprot.2010.5 PubMedCentralPubMedCrossRefGoogle Scholar
  61. Ruan WK, Wu YH, An J, Zheng SJ (2012a) Polymorphisms of chicken toll-like receptors 4, 15, and 21 in different breeds. Poult Sci 91:2512–2516. doi: 10.3382/ps.2012-02319 PubMedCrossRefGoogle Scholar
  62. Ruan WK, Wu YH, Zheng SJJ (2012b) Different genetic patterns in avian Toll-like receptor (TLR)5 genes. Mol Biol Rep 39:3419–3426. doi: 10.1007/s11033-011-1113-7 PubMedCrossRefGoogle Scholar
  63. Sedlak K, Literak I, Vitula F, Benaak J (2000) High susceptibility of partridges (Perdix perdix) to toxoplasmosis compared with other gallinaceous birds. Avian Pathol 29:563–569PubMedCrossRefGoogle Scholar
  64. Shen YY, Liang L, Sun YB, Yue BS, Yang XJ et al (2010) A mitogenomic perspective on the ancient, rapid radiation in the Galliformes with an emphasis on the Phasianidae. BMC Evol Biol 10:132. doi: 10.1186/1471-2148-10-132 PubMedCentralPubMedCrossRefGoogle Scholar
  65. Slawinska A, D’Andrea M, Pilla F, Bednarczyk M, Siwek M (2013) Expression profiles of toll-like receptors 1, 2 and 5 in selected organs of commercial and indigenous chickens. J Appl Genetics 54:489–492. doi: 10.1007/s13353-013-0161-1 CrossRefGoogle Scholar
  66. Smith J, Speed D, Law AS, Glass EJ, Burt DW (2004) In-silico identification of chicken immune-related genes. Immunogenetics 56:122–133. doi: 10.1007/s00251-004-0669-y PubMedCrossRefGoogle Scholar
  67. Šťastný K, Bejček V, Hudec K (2010) Atlas hnízdního rozšíření ptáků v České republice. Aventinum, PrahaGoogle Scholar
  68. Sutton JT, Nakagawa S, Robertson BC, Jamieson IG (2011) Disentangling the roles of natural selection and genetic drift in shaping variation at MHC immunity genes. Mol Ecol 20:4408–4420. doi: 10.1111/j.1365-294X.2011.05292.x PubMedCrossRefGoogle Scholar
  69. Svobodova J, Gabrielova B, Synek P, Marsik P, Vanek T et al (2013) The health signalling of ornamental traits in the Grey Partridge (Perdix perdix). J Ornithol 154:717–725. doi: 10.1007/s10336-013-0936-5 CrossRefGoogle Scholar
  70. Temperley ND, Berlin S, Paton IR, Griffin DK, Burt DW (2008) Evolution of the chicken Toll-like receptor gene family: a story of gene gain and gene loss. BMC Genom 9:62. doi: 10.1186/1471-2164-9-62 CrossRefGoogle Scholar
  71. Tompkins DM, Draycott RAH, Hudson PJ (2000) Field evidence for apparent competition mediated via the shared parasites of two gamebird species. Ecol Lett 3:10–14. doi: 10.1046/j.1461-0248.2000.00117.x CrossRefGoogle Scholar
  72. Tompkins DM, Parish DMB, Hudson PJ (2002) Parasite-mediated competition among red-legged partridges and other lowland gamebirds. J Wildl Manage 66:445–450. doi: 10.2307/3803177 CrossRefGoogle Scholar
  73. Uno Y, Usui T, Fujimoto Y, Ito T, Yamaguchi T (2012) Quantification of interferon, interleukin, and Toll-like receptor 7 mRNA in quail splenocytes using real-time PCR. Poult Sci 91:2496–2501. doi: 10.3382/ps.2012-02283 PubMedCrossRefGoogle Scholar
  74. Vidus-Rosin A, Meriggi A, Pella F, Zaccaroni M (2010) Demographic parameters of reintroduced grey partridges in central Italy and the effect of weather. Eur J Wildl Res 56:369–375. doi: 10.1007/s10344-009-0329-5 CrossRefGoogle Scholar
  75. Vinkler M, Albrecht T (2009) The question waiting to be asked: innate immunity receptors in the perspective of zoological research. Folia Zool 58:15–28Google Scholar
  76. Vinkler M, Bryjova A, Albrecht T, Bryja J (2009) Identification of the first Toll-like receptor gene in passerine birds: TLR4 orthologue in zebra finch (Taeniopygia guttata). Tissue Antigens 74:32–41. doi: 10.1111/j.1399-0039.2009.01273.x PubMedCrossRefGoogle Scholar
  77. Vinkler M, Bainova H, Bryja J (2014a) Protein evolution of Toll-like receptors 4, 5 and 7 within Galloanserae birds. Genet Sel Evol 46:72. doi: 10.1186/s12711-014-0072-6 PubMedCentralPubMedCrossRefGoogle Scholar
  78. Vinkler M, Svobodova J, Gabrielova B, Bainova H, Bryjova A (2014b) Cytokine expression in phytohaemagglutinin-induced skin inflammation in a galliform bird. J Avian Biol 45:43–50. doi: 10.1111/j.1600-048X.2011.05860.x CrossRefGoogle Scholar
  79. Vitula F, Peckova L, Bandouchova H, Pohanka M, Novotny L et al (2011) Mycoplasma gallisepticum infection in the grey partridge Perdix perdix: outbreak description, histopathology, biochemistry and antioxidant parameters. BMC Vet Res. doi: 10.1186/1746-6148-7-34 PubMedCentralPubMedGoogle Scholar
  80. Walsh C, Gangloff M, Monie T, Smyth T, Wei B et al (2008) Elucidation of the MD-2/TLR4 interface required for signaling by lipid IVa. J Immunol 181:1245–1254PubMedCrossRefGoogle Scholar
  81. Wang F, Lu LZ, Yuan H, Tian Y, Li JJ et al (2011) cDNA cloning, characterization and expression analysis of Toll-like receptor 4 gene in goose. Can J Anim Sci 91:371–377. doi: 10.4141/cjas2011-002 CrossRefGoogle Scholar
  82. Warren WC, Clayton DF, Ellegren H, Arnold AP, Hillier LW et al (2010) The genome of a songbird. Nature 464:757–762. doi: 10.1038/nature08819 PubMedCentralPubMedCrossRefGoogle Scholar
  83. Wei TD, Gong J, Jamitzky F, Heckl WM, Stark RW et al (2009) Homology modeling of human toll-like receptors TLR7, 8, and 9 ligand-binding domains. Protein Sci 18:1684–1691. doi: 10.1002/pro.186 PubMedCentralPubMedCrossRefGoogle Scholar
  84. Wlasiuk G, Khan S, Switzer WM, Nachman MW (2009) A history of recurrent positive selection at the Toll-like receptor 5 in primates. Mol Biol Evol 26:937–949. doi: 10.1093/molbev/msp018 PubMedCentralPubMedCrossRefGoogle Scholar
  85. Xiong D, Pan ZM, Kang XL, Wang J, Song L et al (2014) Molecular cloning and functional analysis of duck toll-like receptor 5. Res Vet Sci 97:43–45. doi: 10.1016/j.rvsc.2014.05.010 PubMedCrossRefGoogle Scholar
  86. Yilmaz A, Shen SX, Adelson DL, Xavier S, Zhu JJ (2005) Identification and sequence analysis of chicken toll-like receptors. Immunogenetics 56:743–753. doi: 10.1007/s00251-004-0740-8 PubMedCrossRefGoogle Scholar
  87. Yoon SI, Kurnasov O, Natarajan V, Hong MS, Gudkov AV et al (2012) Structural basis of TLR5-flagellin recognition and signaling. Science 335:859–864. doi: 10.1126/science.1215584 PubMedCentralPubMedCrossRefGoogle Scholar
  88. Zhang Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinformatics. doi: 10.1186/1471-2105-9-40 Google Scholar
  89. Zhao WM, Huang ZY, Chen Y, Zhang Y, Rong GH et al (2013) Molecular cloning and functional analysis of the duck TLR4 gene. Int J Mol Sci 14:18615–18628. doi: 10.3390/ijms140918615 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Michal Vinkler
    • 1
    Email author
  • Hana Bainová
    • 1
  • Anna Bryjová
    • 1
    • 2
  • Oldřich Tomášek
    • 1
    • 2
  • Tomáš Albrecht
    • 1
    • 2
  • Josef Bryja
    • 2
  1. 1.Department of Zoology, Faculty of ScienceCharles University in PraguePragueCzech Republic, EU
  2. 2.Institute of Vertebrate BiologyAcademy of Sciences of the Czech RepublicBrnoCzech Republic, EU

Personalised recommendations