, Volume 143, Issue 1, pp 11–20 | Cite as

Reconstruction of two colonisation pathways of Mantis religiosa (Mantodea) in Germany using four mitochondrial markers

  • Catherine Anne LinnEmail author
  • Eva Maria Griebeler


Past and recent climatic changes induced shifts in species ranges. Mantis religiosa has also expanded its range across Germany within the past decades. To determine the ancestry of German M. religiosa we sequenced four mitochondrial genes (COI, COII, Cyt b, ND4) of European M. religiosa populations. We found an east, central and west European lineage of M. religiosa. These distinct lineages are consistent with genetic isolation by distance during glacial periods, and the re-colonization of northern parts of Europe by species from different refugia. Within Germany, we found haplotypes clustering to the central and west European lineage suggesting that M. religiosa immigrated from two directions into Germany. Mismatch distributions, and negative Tajima’s D and Fu’s Fs values indicate a current range expansion of the central and west European lineage. We hypothesise that ongoing global warming which increases the availability of thermally favourable areas in Germany for M. religiosa adds to its current range expansion. In conclusion, M. religiosa colonized Germany via two directions: west German populations descended from French populations and east German populations from Czech populations.


COI COII Cyt b ND4 Climate change Range margin 



We are extremely grateful to Roberto Battiston, Manfred Berg, Enrico Busato, Claudine Decourchelle, Denis Loupy, Reinhard Ehrmann, Sönke Hardersen, Manfred Keller, Ingmar Landeck, Nora Lieskonig and Harald Krenn, Thomas Michaelis, Luca Picciau, Gerhard Pohl, Susanne Randolf, Ralf Rasch, Kai Schütte, and Christopher Tuchscherer for collecting and/or providing samples of M. religiosa. We also thank Christiane Groß for DNA preparation and Jes Johannesen for precious advice in data evaluation. We are especially grateful to Petr Janšta for providing genetic data from his phylogeographic database on M. religiosa. Additionally we thank Rebecca Nagel for linguistic improvement and the members of our working group, as well as the two anonymous reviewers for their valuable comments on an earlier version of this manuscript. This research was supported by a grant from the Deutsche Bundesstiftung Umwelt. This paper is part of the PhD thesis of Catherine Anne Linn.

Conflict of interest

The authors declare no conflict of interest.

Ethical standard

This article does not contain any experiments with animals performed by any of the authors. For collecting M. religiosa tissue samples we got the permissions from the nature conservation authorities.

Supplementary material

10709_2014_9806_MOESM1_ESM.pdf (114 kb)
Supplementary material 1 (PDF 114 kb)
10709_2014_9806_MOESM2_ESM.pdf (112 kb)
Supplementary material 2 (PDF 112 kb)
10709_2014_9806_MOESM3_ESM.pdf (11 kb)
Supplementary material 3 (PDF 11 kb)
10709_2014_9806_MOESM4_ESM.pdf (13 kb)
Supplementary material 4 (PDF 13 kb)


  1. Akaike H (1979) A bayesian extension of the minimum AIC procedure of autoregressive model fitting. Biometrika 66:237–242CrossRefGoogle Scholar
  2. Aspöck H (2008) Postglacial formation and fluctuations of the biodiversity of Central Europe in the light of climate change. Parasitol Res 103:7–10CrossRefGoogle Scholar
  3. Badeck F, Pompe S, Kühn I, Glauer A (2008) Wetterextreme und Artenvielfalt. Zeitlich hochauflösende Klimainformationen auf dem Messtischblattraster und für Schutzgebiete in Deutschland. Naturschutz und Landschaftsplanung 40:343–345Google Scholar
  4. Ballard JWO, Kreitman M (1995) Is mitochondrial DNA a strictly neutral marker? Trends Ecol Evol 10:485–488PubMedCrossRefGoogle Scholar
  5. Barr NB (2009) Pathway analysis of Ceratitis captitata (Diptera: Tephritidae) using mitochondrial DNA. J Econ Entomol 102:401–411PubMedCrossRefGoogle Scholar
  6. Berg MK, Schwarz CJ, Mehl JE (2011) Die Gottesanbeterin. Westarp Wissenschaften, HohenwarslebenGoogle Scholar
  7. Brechtel F (1996) Neozoen: neue Insektenarten in unserer Natur? In: Kinzelbach R, Schmidt-Fischer S (eds) Gebhardt H. Gebietsfremde Tierarten. ecomed, Landsberg, pp 127–154Google Scholar
  8. Bull JJ, Huelsenbeck JP, Cunningham CW, Swofford DL, Waddell PJ (1993) Partitioning and combining data in phylogenetic analysis. Syst Biol 42:384–397CrossRefGoogle Scholar
  9. Bylebyl K, Poschlod P, Reisch C (2008) Genetic variation of Eryngium campestre L. (Apiaceae) in Central Europe. Mol Ecol 17:3379–3388PubMedCrossRefGoogle Scholar
  10. Cooper SJB, Ibrahim KM, Hewitt GM (1995) Postglacial expansion and genome subdivision in the European grasshopper Chorthippus parallelus. Mol Ecol 4:49–60PubMedCrossRefGoogle Scholar
  11. Detzel P (1995) Herkunft und Verbreitung der Heuschrecken in Baden-Württemberg. Articulata 10:107–118Google Scholar
  12. Detzel P, Ehrmann R (1998) Mantis religiosa. In: Detzel P (ed) Die Heuschrecken Baden-Württembergs. Ulmer, Stuttgart (Hohenheim), pp 181–187Google Scholar
  13. Dlugosch KM, Parker IM (2008) Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol Ecol 17:431–449PubMedCrossRefGoogle Scholar
  14. Dupanloup I, Schneider S, Excoffier L (2002) A simulated annealing approach to define the genetic structure of populations. Mol Ecol 11:2571–2581PubMedCrossRefGoogle Scholar
  15. Ehrmann R (1985) Standorttreue von Mantis religiosa (L.). Articulata 2:179–180Google Scholar
  16. Ehrmann R (2003) Die Gottesanbeterin (Mantis religiosa), Neufunde in Deutschland. Articulata 18:253–254Google Scholar
  17. Excoffier L (2004) Patterns of DNA sequence diversity and genetic structure after a range expansion: lessons from the infinite-island model. Mol Ecol 13:853–864PubMedCrossRefGoogle Scholar
  18. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567PubMedCrossRefGoogle Scholar
  19. Fu Y (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925PubMedCentralPubMedGoogle Scholar
  20. Fu Y, Li W (1993) Statistical tests of neutrality of mutations. Genetics 133:693–709PubMedCentralPubMedGoogle Scholar
  21. Hammouti N, Schmitt T, Seitz A, Kosuch J, Veith M (2010) Combining mitochondrial and nuclear evidences: a refined evolutionary history of Erebia medusa (Lepidoptera: Nymphalidae: Satyrinae) in Central Europe based on the COI gene. J Zool Syst Evol Res 48:115–125CrossRefGoogle Scholar
  22. Harpending HC (1994) Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Hum Biol 66:591–600PubMedGoogle Scholar
  23. Harz K (1957) Die Gottesanbeterin. Natur und Volk 87:187–193Google Scholar
  24. Hewitt GM (1996) Some genetic consequences of ice ages, and their role in divergence and speciation. Biol J Linn Soc 58:247–276CrossRefGoogle Scholar
  25. Hewitt GM (1999) Post-glacial re-colonization of European biota. Biol J Linn Soc 68:87–112CrossRefGoogle Scholar
  26. Hickling R, Roy DB, Hill JK, Fox R, Thomas CD (2006) The distribution of a wide range of taxonomic groups are expanding polewards. Glob Change Biol 12:450–455CrossRefGoogle Scholar
  27. Hideg JI (1994) The territorial behaviour of the Mantis religiosa and its migration propensity. Bull inf Soc Lepid Rom 5:291–296Google Scholar
  28. Hideg JI (1996) Imbalances between the sexes in Mantis religiosa populations. Entomol Romanica 1:77–82Google Scholar
  29. Li T, Zhang M, Qu Y, Ren Z, Zhang J, Guo Y et al (2011) Population genetic structure and phylogeographical pattern of rice grasshopper, Oxya hyla intricata, across Southeast Asia. Genetica 139:511–524PubMedCrossRefGoogle Scholar
  30. Liana A (2007) Distribution of Mantis religiosa (L.) and its changes in Poland. Fragmenta Faunistica 50:91–125CrossRefGoogle Scholar
  31. Lunt DH, Ibrahim KM, Hewitt GM (1998) mtDNA phylogeography and postglacial patterns of subdivision in the meadow grasshopper Chorthippus parallelus. Heredity 80:633–641PubMedCrossRefGoogle Scholar
  32. Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669CrossRefGoogle Scholar
  33. Pulliam RH (2000) On the relationship between niche and distribution. Ecol Lett 3:349–361CrossRefGoogle Scholar
  34. Reis DM, Cunha RL, Patrao C, Rebelo R, Castilho R (2011) Salamandra salamandra (Amphibia: Caudata: Salamandridae) in Portugal: not all black and yellow. Genetica 139:1095–1105PubMedCrossRefGoogle Scholar
  35. Robinet C, Roques A (2010) Direct impacts of recent climate warming on insect populations. Integr Zool 5:132–142PubMedCrossRefGoogle Scholar
  36. Rogers AR, Harpending HC (1992) Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 9:552–569PubMedGoogle Scholar
  37. Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds AJ (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60PubMedCrossRefGoogle Scholar
  38. Salt RW, James HG (1947) Low temperature as a factor in the mortality of eggs of Mantis religiosa L. Can Entomol 79:33–36CrossRefGoogle Scholar
  39. Scataglini MA, Lanteri AA, Confalonieri VA (2006) Diversity of boll weevil populations in South America: a phylogeographic approach. Genetica 126:353–368PubMedCrossRefGoogle Scholar
  40. Swofford DL (2003) PAUP*. Sinauer Associates, SunderlandGoogle Scholar
  41. Taberlet P, Fumagalli L, Wust-Saucy A, Cosson J (1998) Comparative phylogeography and postglacial colonization routes in Europe. Mol Ecol 7:453–464PubMedCrossRefGoogle Scholar
  42. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595PubMedCentralPubMedGoogle Scholar
  43. Tajima F (1996) The amount of DNA polymorphism maintained in a finite population when the neutral mutation rate varies among sites. Genetics 143:1457–1465PubMedCentralPubMedGoogle Scholar
  44. Tamura K (1992) Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G + C-content biases. Mol Biol Evol 9:678–687PubMedGoogle Scholar
  45. Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526PubMedGoogle Scholar
  46. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA 5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedCentralPubMedCrossRefGoogle Scholar
  47. Walther G, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC et al (2002) Ecological responses to recent climate change. Nature 416:389–395PubMedCrossRefGoogle Scholar
  48. Zitari-Chatti R, Chatti N, Fulgione D, Caiazza I, Aprea G, Elouaer A et al (2009) Mitochondrial DNA variation in the caramote prawn Penaeus (Melicertus) kerathurus across a transition zone in the Mediterranean Sea. Genetica 136:439–447PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of EcologyUniversity of MainzMainzGermany

Personalised recommendations