, Volume 142, Issue 6, pp 507–516 | Cite as

Mitochondrial DNA variability to explore the relationship complexity of Schizothoracine (Teleostei: Cyprinidae)

  • Syed Mudasir Ahmad
  • Farooz Ahmad Bhat
  • Masood-ul Hassan Balkhi
  • Bilal Ahmad Bhat


Despite numerous studies on the taxonomy of a highly complex group of schizothoracine (snow trouts), with over five recognized species from Kashmir, India (Schizothorax niger, Schizothorax esocinus, Schizothorax plagiostomus, Schizothorax curvifrons and Schizothorax labiatus) based on traditional morphological data, the relationships between these species is poorly understood and the taxonomic validity is still under debate. To resolve the evolutionary relationships among these species, we sequenced mitochondrial fragments, including 16Sr RNA, Cytb and the D-loop. Separate analyses of 16S and Cytb showed intermixing of the species and 16S was found more conserved than Cytb. The D-loop was found highly variable and showed length variation between and within species. Length variation was observed in di-nucleotide (TA)n microsatellite repeats with a variable number of repeat units (n = 7–14) that did not show heteroplasmy. Central conserved sequence blocks (CSBs) in D-loop sequences were found comparable to other vertebrate species. All phylogenetic reconstructions recovered the focal taxa as a monophyletic clade within the schizothoracines. Analyses with combined mitochondrial data sets showed close genetic relationships of all the five species. In addition to a close relationship between S. niger and S. curvifrons, two distinct groupings of S. ecoscinus and S. plagiostomus were supported by all the analyses. This study gives an insight into molecular phylogeny of the species and improves our understanding of historical and taxonomic relationships derived from morphological and ecological studies.


Schizothoracines Complex group Mitochondrial DNA Microsatellite variation 



This work was supported by the Department of Science and Technology, New Delhi, India under Project No. SR/SO/AS-15/2010. We are highly thankful to Prof. Jonathon Stillman, Integrative Biology, University of California, Berkeley for his suggestions and making necessary corrections. The help of Michael S. Brewer, Brain Lavin, Bastien Boussau and Hina Fayaz Bhat are greatly acknowledged. We also thank anonymous reviewers for very helpful comments.

Supplementary material

10709_2014_9797_MOESM1_ESM.jpg (118 kb)
Supplementary material 1 (JPEG 118 kb)
10709_2014_9797_MOESM2_ESM.jpg (115 kb)
Supplementary material 2 (JPEG 114 kb)


  1. Avise JC (1994) Molecular markers, natural history, and evolution. Chapman & Hall, New YorkCrossRefGoogle Scholar
  2. Balkhi MH (2005) Fish diversity of Jammu and Kashmir and conservation. In: Patloo RA (ed) Kashmir speaks. G. M. Publishers, Kashmir, pp 104–118Google Scholar
  3. Bentzen P, Leggett WC, Brown GG (1988) Length and restriction site heteroplasmy in the mitochondrial DNA of American Shad (Alosa sapidissima). Genet 118:509–518Google Scholar
  4. Bhat FA, Yousuf AR, Balkhi MH, Mahdi MD, Shah FA (2010) Length–weight relationship and morphometric characteristics of Schizothorax spp. in the River Lidder of Kashmir. Indian J Fish 57:73–76Google Scholar
  5. Briolay J, Galtier N, Brito RM, Bouvet Y (1998) Molecular phylogeny of Cyprinidae inferred from cytochrome b DNA sequences. Mol Phylogenet Evol 9:100–108PubMedCrossRefGoogle Scholar
  6. Brown WM, George MJ, Wilson AC (1979) Rapid evolution of mitochondrial DNA. Proc Natl Acad Sci USA 76:1967–1971PubMedCentralPubMedCrossRefGoogle Scholar
  7. Brown JR, Beckenbach AT, Smith MJ (1992) Mitochondrial DNA length variation and heteroplasmy in populations of white sturgeon (Acipenser transmontanus). Genet 132:221–228Google Scholar
  8. Cao WX, Chen YY, Wu YF, Zhu SQ (1981) Origin and evolution of schizothoracine fishes in relation to the upheaval of the Xizang Plateau. In: Tibetan Expedition Team of the Chinese Academy of Sciences (ed) Studies on the period, amplitude and type of the uplift of the Qinghai-Xizang Plateau. Science Press, Beijing, pp 118–130Google Scholar
  9. Cecconi F, Giorgi M, Mariottini P (1995) Unique features in the mitochondrial D-loop region of the European sea bass Dicentrarchus labrax. Gene 160:149–155PubMedCrossRefGoogle Scholar
  10. Chen YF, Cao WY (2000) Schizothoracinae. Fauna Sinica, Osteichthyes, Cypriniformes III. In: Yue P (ed) Science Press, Beijing, pp 273–335Google Scholar
  11. Darriba D, Taboada GL, Doallo R, Posada D (2012) J model test 2: more models, new heuristics and parallel computing. Nat Methods 9:772PubMedCrossRefGoogle Scholar
  12. Das SM, Subla BA (1963) The ichthyofauna of Kashmir: part I history, topography, origin, ecology and general distribution. Ichthyologica 2:87–106Google Scholar
  13. Das SM, Subla BA (1964) The ichthyofauna of Kashmir: part II the speciation of Kashmir fishes with two new records of species. Ichthyologica 3:57–62Google Scholar
  14. Desalle R, Amato G (2004) The expansion of conservation genetics. Nature 5:702–712Google Scholar
  15. Dimmick WW, Edds DR (2002) Evolutionary genetics of the endemic Schizorathicine Cypriniformes: Cyprinidae) fishes of Lake Rara, Nepal. Biochem System Ecol 30:919–929CrossRefGoogle Scholar
  16. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797PubMedCentralPubMedCrossRefGoogle Scholar
  17. Eschmeyer WN (1998) Catalog of fishes, vols 1–3. California Academy of Sciences, San Francisco, CA.
  18. Frankham R (2005) Genetics and extinction. Biol Cons 126:131–140CrossRefGoogle Scholar
  19. Ganai FA, Yousuf AR, Dar SA, Tripathi NK, Wani SU (2011) Cytotaxonomic status of schizothoracine fishes of Kashmir Himalaya (Teleostei: Cyprinidae). Cary 64(4):435–445Google Scholar
  20. He D, Chen Y (2006) Biogeography and molecular phylogeny of the genus Schizothorax (Teleostei: Cyprinidae) in China inferred from cytochrome b sequences. J Biogeogr 33:1448–1460CrossRefGoogle Scholar
  21. Heckel JJ (1838) Fishe aus Caschmir, gesammelt und herausgegeben von Carl Freiherrn von Hügel, beschrieben von Joh. Jaacob Heckel, Mechita Risten, Vienna, pp 111–112Google Scholar
  22. Hillis DM, Bull JJ (1993) An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst Biol 42:182–192CrossRefGoogle Scholar
  23. Hoelzel AR, Hancock JM, Dover GA (1993) Generation of VNTRs and heteroplasmy by sequence turnover in the Valdes mitochondrial control region of two elephant seal species. J Mol Evol 37:190–197PubMedCrossRefGoogle Scholar
  24. Huelsenbeck JP, Ronquist F (2001) MrBayes: Bayesian inference of phylogeny. Bioinformatics 17:754–755PubMedCrossRefGoogle Scholar
  25. Jhingran VG (1991) Fish and fisheries of India. Hindustan Publishing Corporation (India), DelhiGoogle Scholar
  26. Johansen S, Guddal PH, Johansen T (1990) Organization of the mitochondrial genome of Atlantic cod, Gadus morhua. Nucleic Acids Res 18:411–419PubMedCentralPubMedCrossRefGoogle Scholar
  27. Johns GC, Avise JC (1998) Tests for ancient species flocks based on molecular phylogenetic appraisals of Sebastes rockfishes and other marine fishes. Evol 52:1135–1146CrossRefGoogle Scholar
  28. Kullander SO, Fang F, Delling B, Ahlander E (1999) The fishes of the Kashmir Valley. In: Nyman L (ed) River Jhelum, Kashmir Valley. Impact on the aquatic environment, Swedmar, pp 99–162Google Scholar
  29. Li J, Fang X, Pan B (2001) Late Cenozoic intensive uplift of Qinghai-Xizang Plateau and its impact on environments in surrounding area. Quat Sci 5:381–391Google Scholar
  30. Li Y, Ren Z, Shedlock AM, Wu J, Sang L, Tersing T, Hasegawa M, Yonezawa T, Zhong Y (2013) High altitude adaptation of the schizothoracine fishes (Cyprinidae) revealed by themitochondrial genome analyses. Gene 517:169–178PubMedCrossRefGoogle Scholar
  31. Maddison DR, Maddison WP (2003) MacClade 4.06: analysis of phylogeny and character evolution. Sinauer Associates, Sunderland, MAGoogle Scholar
  32. McClelland J (1839) Indian Cyprinidae. Asiat Res 19(2):217–471Google Scholar
  33. McClelland J (1842) On the fresh water fishes collected by William Grifth, Esq. E.L.S. Madras Medical Service, during his travel under the orders of supreme Governor of India, from 1835 to 1842. Calcutta J Nat Hist 2:560–589Google Scholar
  34. Meyer A (1994) DNA technology and phylogeny of fish: molecular phylogenetic studies of fish. In: Beaumont AR (ed) Genetic and evolution of aquatic organisms. Chapman and Hall, London, pp 220–290Google Scholar
  35. Miracle AL, Campton DE (1995) Tandem repeat sequence variation and length heteroplasmy in the mitochondrial DNA D-loop of the threatened Gulf of Mexico sturgeon, Acipenser oxyrhynchus desotoi. J Hered 86:22–27PubMedGoogle Scholar
  36. Mirza MR (1991) A contribution to the systematics of the schizothoracine fishes (Pisces: Cyprinidae) with the description of three new tribes. Pak J Zool. 23:339–341Google Scholar
  37. Posada D, Buckley TR (2004) Model selection and model averaging in phylogenetics: advantages of Akaike Information Criterion and Bayesian approaches over likelihood ratio tests. Syst Biol 53:793–808PubMedCrossRefGoogle Scholar
  38. Qi D, Guo S, Tang J, Zhao X, Liu J (2007) Mitochondrial DNA phylogeny of two morphologically enigmatic fishes in the subfamily Schizothoracinae (Teleostei: Cyprinidae) in the Qinghai-Tibetan Plateau. J Fish Biol 70:60–74CrossRefGoogle Scholar
  39. Raina HS, Petr T (1999) Coldwater fish and fisheries in the Indian Himalayas: lakes and reservoirs. In: Petr T (ed) Fish and fisheries at higher altitude: Asia. FAO Fish.Tech. Pap. No. 385. FAO, Rome, pp 64–88Google Scholar
  40. Richter SC, Crother BI, Broughton RE (2009) Genetic consequences of population reduction and geographic isolation in the critically endangered frog, Rana sevosa. Copeia 4:801–808Google Scholar
  41. Rishi KK, Shashikala, Rishi S (1998) Karyotype study on six Indian hill-stream fishes. Chromosome Sci 2(1):9–13Google Scholar
  42. Rochej LA, Snyderd M, Cook I, Fuller K, Zouros E (1990) Molecular characterization ofa repeat element causing large-scale variation in the mitochondrial DNA of the sea scallop, Placopecten magellanicus. Mol Biol Evol 7:45–64Google Scholar
  43. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, NewYork, p 1659. ISBN:0-87969-309-6Google Scholar
  44. Sasaki T, Kartavtsev YP, Chiba SN, Sviridov W, Uematsu T, Hanzawa N (2007) Genetic divergence and phylogenetic independence of far eastern species in subfamily Leuciscinae (Pisces; Cyperinidae) inferred from mitochondrial DNA analyses. Genes Genet Syst 82:329–340PubMedCrossRefGoogle Scholar
  45. Silas EG (1960) Fishes from the Kashmir valley. J Bombay Nat Hist Soc 57(1):66–77Google Scholar
  46. Simon C, Franke A, Martin A (1991) The polymerase chain reaction: DNA extraction and amplification. In: Hewitt GM, Johnson A, Young JPW (eds) Molecular techniques in Taxonomy. Springer, Berlin, pp 329–355CrossRefGoogle Scholar
  47. Swofford DL (2002) PAUP*: phylogenetic analysis using parsimony Ver 40b10. Sinauer Associates, SunderlandGoogle Scholar
  48. Szibor R, Michael M, Spitsyn VA, Plate I, Ginter EK, Krause E (1997) Mitochondrial D-loop 3′ (CA)n repeat polymorphism: optimization of analysis and population data. Electrophoresis 18:2857–2860PubMedCrossRefGoogle Scholar
  49. Talwar PK, Jhingran AG (1991) Inland fishes of India and adjacent countries. Oxford and IBH Publishing, New DelhiGoogle Scholar
  50. Thai BT, Burridge CP, Pham TA, Austin CM (2004) Using mitochondrial nucleotide sequences to investigate diversity and genealogical relationships within common carp (Cyprinus carpio). Anim Genet 36:23–28CrossRefGoogle Scholar
  51. Thai BT, Si VN, Phan PD, Austin CM (2007) Phylogenetic evaluation of subfamily classification of the Cyprinidae focusing on Vietnamese species. Aquat Living Resour 20:143–153CrossRefGoogle Scholar
  52. Tilak R (1987) The fauna of India and the adjacent countries, pisces (Teleostomi) sub-family: Schizothoracinae. Zoological Survey of India, Dehra Dun. K. P. Basu Printing Works, CalcuttaGoogle Scholar
  53. Tsigenopoulos CS, Berredi P (2000) Molecular phylogeny of North Mediterranean freshwater barbs genus Barbus: Cyprinidae) inferred from cytochrome b sequences: biogeographic and systematic implications. Mol Phylogenet Evol 14:165–179PubMedCrossRefGoogle Scholar
  54. Wright JM (1994) Mutation at VNTRs: are minisatellites the evolutionary progeny of microsatellites? Genome 37:345–347PubMedCrossRefGoogle Scholar
  55. Wu YF, Wu CZ (1992) The fishes of the Qinghai-Xizang Plateau (in Chinese). Sichuan Publishing House of Science and Technology, ChenduGoogle Scholar
  56. Yang J, Yang JX, Chen XY (2012) A re-examination of the molecular phylogeny and biogeography of the genus Schizothorax (Teleostei: Cyprinidae) through enhanced sampling, with emphasis on the species in the Yunnan-Guizhou Plateau, China. J Zool Syst Ecol Res 50:148–191Google Scholar
  57. Yousuf AR (1996) Fishery resource of Kashmir. In: Khan AH, Pandit AK (eds) Ecology, environment and energy. University of Kashmir, India, pp 75–120Google Scholar
  58. Yunfei W (1987) A survey of the fish fauna of Mount Namjagbarwa region in Xizang (Tibet), China. In: Kullander SO, Fernholm B (eds) Proc. V Congr Europ Ichthyol, Stockholm; Sweden, pp 109–112Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Syed Mudasir Ahmad
    • 1
  • Farooz Ahmad Bhat
    • 2
  • Masood-ul Hassan Balkhi
    • 2
  • Bilal Ahmad Bhat
    • 2
  1. 1.Division of Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, ShuhamaSher-e-Kashmir University of Agricultural Sciences and Technology – KashmirShuhama, SrinagarIndia
  2. 2.Faculty of FisheriesSher-e-Kashmir University of Agricultural Sciences and Technology – KashmirShuhama, SrinagarIndia

Personalised recommendations