Genetica

, Volume 143, Issue 2, pp 207–223 | Cite as

How does molecular-assisted identification affect our estimation of α, β and γ biodiversity? An example from understory red seaweeds (Rhodophyta) of Laminaria kelp forests in Brittany, France

  • Marine Robuchon
  • Myriam Valero
  • Delphine Gey
  • Line Le Gall
Article

Abstract

Using two distinct identification methods, one based on morphological characters only and the other combining morphological and molecular characters (integrative identification method), we investigated the differences in the biodiversity patterns of red seaweed communities associated with kelp forests at various spatial scales: the regional diversity of Brittany, France (γ-diversity), the local diversity at different Breton sites (α-diversity) and the differentiation in species diversity and abundances among those sites (β-diversity). To characterise α and β diversities, we conducted an initial survey in winter 2011 at 20 sites belonging to four different sub-regions, with specimens collected from six quadrats of 0.10 m2 at each site, three in the tidal zone dominated by Laminaria digitata and three in the zone dominated by Laminaria hyperborea. To further characterise the regional diversity, we carried out another survey combining several sampling methods (quadrats and visual census) in different seasons (winter, spring and summer) and different years (2011 and 2012). In all, we collected 1990 specimens that were assigned to 76 taxa with the identification method based on morphological characters and 139 taxa using the integrative method. For γ and α diversity, the use of molecular characters revealed several cases of cryptic diversity and both increased the number of identified taxa and improved their taxonomic resolution. However, the addition of molecular characters for specimen identification only slightly affected estimates of β-diversity.

Keywords

Barcode Community ecology Cryptic diversity Red algae Rocky shore Molecular taxonomy Systematics 

Supplementary material

10709_2014_9796_MOESM1_ESM.xlsx (161 kb)
Supplementary material 1 (XLSX 161 kb) Table S1 Collection and identification information for red seaweed specimens used in this study
10709_2014_9796_MOESM2_ESM.docx (24 kb)
Supplementary material 2 (DOCX 24 kb) Table S2 Results of the pairwise tests testing the differences in log-transformed species abundances of red seaweed communities (a) between communities understory of Laminaria digitata (Ld) and Laminaria hyperborea (Lh) within each sub-region (SMB: St Malo Bay, MoB: Morlaix Bay, IrS: Iroise Sea, SBr: Southern Brittany) and (b) among sub-regions for each kelp canopy species; t, the t-statistic; and P(perm), the probability calculated by permutations

References

  1. Anderson M, Gorley RN, Clarke RK (2008) Permanova + for primer: guide to software and statistical methods. Plymouth Marine Laboratory, PlymouthGoogle Scholar
  2. Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW (2013) GenBank. Nucleic Acids Res 41:D36–D42. doi:10.1093/nar/gks1195 CrossRefPubMedCentralPubMedGoogle Scholar
  3. Bickford D, Lohman DJ, Sodhi NS, Ng PKL, Meier R, Winker K, Ingram KK, Das I (2007) Cryptic species as a window on diversity and conservation. Trends Ecol Evol 22:148–155. doi:10.1016/j.tree.2006.11.004 CrossRefPubMedGoogle Scholar
  4. Bortolus A (2008) Error cascades in the biological sciences: the unwanted consequences of using bad taxonomy in ecology. Ambio 37:114–118. doi:10.1579/0044-7447(2008)37[114:ECITBS]2.0.CO;2 CrossRefPubMedGoogle Scholar
  5. Brodie JA, Irvine LM (2003) Seaweeds of the British Isles, vol 1, Rhodophyta, pt 3B, Bangiophycidae. The Natural History Museum, London, UKGoogle Scholar
  6. Bunker FSD, Brodie JA, Maggs CA, Bunker AR (2010) Seasearch guide to seaweeds of Britain and Ireland. Marine Conservation Society, Ross-on-WyeGoogle Scholar
  7. Cabioc’h J, Floc’h J-Y, Le Toquin A, Boudouresque CF, Meinesz A, Verlaque M (2006) Guide des algues des mers d’Europe. Delachaux et Niestlé, ParisGoogle Scholar
  8. Chesters D (2013) collapsetypes.pl [computer software http://sourceforge.net/projects/collapsetypes/]
  9. Clarke KR, Gorley RN (2006) PRIMER ver. 6. User Manual/Tutorial. PRIMER-E, Plymouth, UKGoogle Scholar
  10. Clarkston BE, Saunders GW (2013) Resolving species diversity in the red algal genus Callophyllis (Kallymeniaceae, Gigartinales) in Canada using molecular assisted alpha taxonomy. Eur J Phycol 48:27–46. doi:10.1080/09670262.2013.767943 CrossRefGoogle Scholar
  11. Coyer J, Peters A, Hoarau G, Stam W, Olsen J (2002) Hybridization of the marine seaweeds, Fucus serratus and Fucus evanescens (Heterokontophyta: Phaeophyceae) in a 100-year-old zone of secondary contact. Proc R Soc Lond, Ser B: Biol Sci 269:1829–1834. doi:10.1098/rspb.2002.2093 CrossRefGoogle Scholar
  12. Cremades J, Barreiro R, Maneiro I, Saunders GW (2011) A new taxonomic interpretation of the type of Plocamium cartilagineum (Plocamiales, Florideophyceae) and its consequences. Eur J Phycol 46:125–142. doi:10.1080/09670262.2011.565129 CrossRefGoogle Scholar
  13. De Clerck O, Guiry M, Leliaert F, Samyn Y, Verbruggen H (2012) Algal taxonomy: a road to nowhere? J Phycol 49:215–225. doi:10.1111/jpy.12020 CrossRefGoogle Scholar
  14. Destombe C, Valero M, Guillemin M-L (2010) Delineation of two sibling red algal species, Gracilaria gracilis and Gracilaria dura (Gracilariales, Rhodophyta), using multiple DNA markers: resurrection of the species G. dura previously described in the Northern Atlantic 200 years ago. J Phycol 46:720–727. doi:10.1111/j.1529-8817.2010.00846.x CrossRefGoogle Scholar
  15. Díaz-Tapia P, Bárbara I, Berecibar E (2013) Vegetative and reproductive morphology of Polysiphonia tripinnata (Rhodomelaceae, Rhodophyta): a new record from the European Atlantic coast. Bot Mar 56:151–160. doi:10.1515/bot-2012-0205 CrossRefGoogle Scholar
  16. Dixon PS, Irvine LM (1977) Seaweeds of the British Isles, vol 1, Rhodophyta, pt 1, Introduction, Nemaliales, Gigartinales. British Museum (Natural History), London, UKGoogle Scholar
  17. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. doi:10.1093/nar/gkh340 CrossRefPubMedCentralPubMedGoogle Scholar
  18. Engel C, Daguin C, Serrão E (2005) Genetic entities and mating system in hermaphroditic Fucus spiralis and its close dioecious relative F. vesiculosus (Fucaceae, Phaeophyceae). Mol Ecol 14:2033–2046. doi:10.1111/j.1365-294X.2005.02558.x CrossRefPubMedGoogle Scholar
  19. Feldmann J, Magne MF (1964). Additions à l’inventaire de la flore marine de Roscoff: Algues, Champignons, Lichens. Editions de la Station biologique de Roscoff, RoscoffGoogle Scholar
  20. Gallon R, Ysnel F, Feunteun E (2013) Optimization of an “in situ” subtidal rocky-shore sampling strategy for monitoring purposes. Mar Pollut Bull 74:253–263. doi:10.1016/j.marpolbul.2013.06.049 CrossRefPubMedGoogle Scholar
  21. Gallon RK, Robuchon M, Leroy B, Le Gall L, Valero M, Feunten E (2014) Twenty years of observed and predicted changes in subtidal red seaweed assemblages along a biogeographical transition zone: inferring potential causes from environmental data. J Biogeogr. doi:10.1111/jbi.12380 Google Scholar
  22. Geoffroy A, Le Gall L, Destombe C (2012) Cryptic introduction of the red alga Polysiphonia morrowii Harvey (Rhodomelaceae, Rhodophyta) in the North Atlantic Ocean highlighted by a DNA barcoding approach. Aquat Bot 100:67–71. doi:10.1016/j.aquabot.2012.03.002 CrossRefGoogle Scholar
  23. Gill BA, Harrington RA, Kondratieff BC, Zamudio KR, Poff NL, Funk WC (2014) Morphological taxonomy, DNA barcoding, and species diversity in southern rocky mountain headwater streams. Freshw Sci 33:288–301. doi:10.1086/674526 CrossRefGoogle Scholar
  24. Gotelli NJ (2004) A taxonomic wish–list for community ecology. Philos Trans R Soc Lond, Ser B: Biol Sci 359:585–597. doi:10.1098/rstb.2003.1443 CrossRefGoogle Scholar
  25. Gouy M, Guindon S, Gascuel O (2010) Seaview version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27:221–224. doi:10.1093/molbev/msp259 CrossRefPubMedGoogle Scholar
  26. Guiry MD, Guiry GM (2014). AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org; searched on 20th May 2014
  27. Harper JT, Saunders GW (2001) The application of sequences of the ribosomal cistron to the systematics and classification of the florideophyte red algae (Florideophyceae, Rhodophyta). Cah Biol Mar 42:25–38Google Scholar
  28. Hebert PD, Cywinska A, Ball SL (2003) Biological identifications through DNA barcodes. Proc R Soc Lond, Ser B: Biol Sci 270:313–321. doi:10.1098/rspb.2002.2218 CrossRefGoogle Scholar
  29. Heinrichs J, Kreier H-P, Feldberg K, Schmidt AR, Zhu R-L, Shaw B, Shaw AJ, Wissemann V (2011) Formalizing morphologically cryptic biological entities: new insights from DNA taxonomy, hybridization, and biogeography in the leafy liverwort Porella platyphylla (Jungermanniopsida, Porellales). Am J Bot 98:1252–1262. doi:10.3732/ajb.1100115 CrossRefPubMedGoogle Scholar
  30. Hind KR, Saunders GW (2013) A molecular phylogenetic study of the tribe Corallineae (Corallinales, Rhodophyta) with an assessment of genus-level taxonomic features and descriptions of novel genera. J Phycol 49:103–114. doi:10.1111/jpy.12019 CrossRefGoogle Scholar
  31. Hirst AJ (2006) Influence of taxonomic resolution on multivariate analyses of arthropod and macroalgal reef assemblages. Mar Ecol Prog Ser 324:83–93. doi:10.3354/meps324083 CrossRefGoogle Scholar
  32. Hu ZM, Li W, Li JJ, Duan DL (2011) Post-Pleistocene demographic history of the North Atlantic endemic Irish moss Chondrus crispus: glacial survival, spatial expansion and gene flow. J Evol Biol 24:505–517. doi:10.1111/j.1420-9101.2010.02186.x CrossRefPubMedGoogle Scholar
  33. Irvine LM (1983) Seaweeds of the British Isles, vol. 1, Rhodophyta, pt 2A, Cryptonemiales (sensu stricto), Palmariales, Rhodymeniales. British Museum (Natural History), London, UKGoogle Scholar
  34. Irvine LM, Chamberlain YM, Maggs CA (1994) Seaweeds of the British Isles, vol 1, Rhodophyta, pt 2B, Corallinales, Hildenbrandiales. The Natural History Museum, London, UKGoogle Scholar
  35. Kaartinen R, Stone GN, Hearn J, Lohse K, Roslin T (2010) Revealing secret liaisons: DNA barcoding changes our understanding of food webs. Ecol Entomol 35:623–638. doi:10.1111/j.1365-2311.2010.01224.x CrossRefGoogle Scholar
  36. Knowlton N (1993) Sibling species in the sea. Annu Rev Ecol Syst 24:189–216. doi:10.1146/annurev.es.24.110193.001201 CrossRefGoogle Scholar
  37. Kucera H, Saunders GW (2012) A survey of Bangiales (Rhodophyta) based on multiple molecular markers reveals cryptic diversity. J Phycol 48:869–882. doi:10.1111/j.1529-8817.2012.01193.x CrossRefGoogle Scholar
  38. Le Gall L, Saunders GW (2010) DNA barcoding is a powerful tool to uncover algal diversity: a case study of the Phyllophoraceae (Gigartinales, Rhodophyta) in the Canadian flora. J Phycol 46:374–389. doi:10.1111/j.1529-8817.2010.00807.x CrossRefGoogle Scholar
  39. Legendre P, Legendre L (1998) Numerical ecology, second english edition. Elsevier Science, AmsterdamGoogle Scholar
  40. Leliaert F, Verbruggen H, Vanormelingen P, Steen F, López-Bautista JM, Zuccarello GC, De Clerck O (2014) DNA-based species delimitation in algae. Eur J Phycol 49:179–196. doi:10.1080/09670262.2014.904524 CrossRefGoogle Scholar
  41. L’Hardy-Halos M, Castric-Fey A, Girard-Descatoire A, Lafargue F (1973) Recherches en scaphandre autonome sur le peuplement végétal du substrat rocheux: l’Archipel de Glénan. Bull Soc Scient Bretagne 48:103–128Google Scholar
  42. Lindstrom SC, Hughey JR, Martone PT (2011) New, resurrected and redefined species of Mastocarpus (Phyllophoraceae, Rhodophyta) from the northeast Pacific. Phycologia 50:661–683. doi:10.2216/10-38.1 CrossRefGoogle Scholar
  43. Maggs CA, Hommersand MH (1993) Seaweeds of the British Isles, vol 1, Rhodophyta, pt 3A, Ceramiales. The Natural History Museum, London, UKGoogle Scholar
  44. Maggs CA, Le Gall L, Mineur F, Provan J, Saunders GW (2013) Fredericqia deveauniensis, gen. et sp. nov. (Phyllophoraceae, Rhodophyta), a new cryptogenic species. Cryptogam Algol 34:273–296. doi:10.7872/crya.v34.iss2.2013.273 CrossRefGoogle Scholar
  45. May RM (1988) How many species are there on earth? Science 241:1441–1449. doi:10.1126/science.241.4872.1441 CrossRefPubMedGoogle Scholar
  46. McDevit DC, Saunders GW (2010) A DNA barcode examination of the Laminariaceae (Phaeophyceae) in Canada reveals novel biogeographical and evolutionary insights. Phycologia 49:235–248CrossRefGoogle Scholar
  47. Moritz C, Cicero C (2004) DNA barcoding: promise and pitfalls. PLoS Biol 2:e354. doi:10.1371/journal.pbio.0020354 CrossRefPubMedCentralPubMedGoogle Scholar
  48. Neiva J, Pearson GA, Valero M, Serrão EA (2010) Surfing the wave on a borrowed board: range expansion and spread of introgressed organellar genomes in the seaweed Fucus ceranoides L. Mol Ecol 19:4812–4822. doi:10.1111/j.1365-294X.2010.04853.x CrossRefPubMedGoogle Scholar
  49. Payo DA, Leliaert F, Verbruggen H, D’hondt S, Calumpong HP, De Clerck O (2013) Extensive cryptic species diversity and fine-scale endemism in the marine red alga Portieria in the Philippines. Proc R Soc Lond Ser B Biol Sci 280: 20122660. doi:10.1098/rspb.2012.2660
  50. Peña V, De Clerck O, Afonso-Carrillo J, Ballesteros E, Bárbara I, Barreiro R, Le Gall L. An integrative systematic approach to species diversity and distribution in the genus Mesophyllum (Corallinales, Rhodophyta) in Atlantic and Mediterranean Europe. Eur J Phycol In press Google Scholar
  51. Pfenninger M, Nowak C, Kley C, Steinke D, Streit B (2007) Utility of DNA taxonomy and barcoding for the inference of larval community structure in morphologically cryptic Chironomus (Diptera) species. Mol Ecol 16:1957–1968. doi:10.1111/j.1365-294X.2006.03136.x CrossRefPubMedGoogle Scholar
  52. Pires AC, Marinoni L (2010) DNA barcoding and traditional taxonomy unified through Integrative Taxonomy: a view that challenges the debate questioning both methodologies. Biota Neotrop 10:339–346. doi:10.1590/S1676-06032010000200035 Google Scholar
  53. Provan J, Maggs CA (2012) Unique genetic variation at a species’ rear edge is under threat from global climate change. Proc R Soc B 279:39–47. doi:10.1098/rspb.2011.0536 CrossRefPubMedCentralPubMedGoogle Scholar
  54. Provan J, Wattier RA, Maggs CA (2005) Phylogeographic analysis of the red seaweed Palmaria palmata reveals a Pleistocene marine glacial refugium in the english channel. Mol Ecol 14:793–803. doi:10.1111/j.1365-294X.2005.02447.x CrossRefPubMedGoogle Scholar
  55. Raffaelli D, Hawkins S (1996) Intertidal ecology. Chapman & Hall, LondonCrossRefGoogle Scholar
  56. Rámirez ME, Contreras-Porcia L, Guillemin M-L, Brodie J, Valdivia C, Flores-Molina MR, Nuñez A, Bulboa Contador C, Lovazzono C (2014) Pyropia orbicularis sp. nov. (Rhodophyta, Bangiaceae) based on a population previously known as Porphyra columbina from the central coast of Chile. Phytotaxa 158:21. doi:10.11646/phytotaxa.158.2.2 CrossRefGoogle Scholar
  57. Ratnasingham S, Hebert PDN (2007) BOLD: The Barcode of Life Data System (www.barcodinglife.org). Mol Ecol Notes 7:355–364. doi:10.1111/j.1471-8286.2007.01678.x CrossRefPubMedCentralPubMedGoogle Scholar
  58. Robuchon M, Le Gall L, Mauger S, Valero M (2014a) Contrasting genetic diversity patterns in two sister kelp species co-distributed along the coast of Brittany, France. Mol Ecol 23:2669–2685. doi:10.1111/mec.12774 CrossRefPubMedGoogle Scholar
  59. Robuchon M, Le Gall L, Gey D, Valero M, Vergés A (2014b) Kallymenia crouaniorum (Kallymeniaceae, Rhodophyta), a new red algal species from the Laminaria hyperborea understory community. Eur J Phycol. doi: 10.1080/09670262.2014.971348
  60. Saunders GW (2005) Applying DNA barcoding to red macroalgae: a preliminary appraisal holds promise for future applications. Philos Trans R Soc Lond, Ser B: Biol Sci 360:1879–1888. doi:10.1098/rstb.2005.1719 CrossRefGoogle Scholar
  61. Saunders GW (2009) Routine DNA barcoding of Canadian Gracilariales (Rhodophyta) reveals the invasive species Gracilaria vermiculophylla in British Columbia. Mol Ecol Resour 9:140–150. doi:10.1111/j.1755-0998.2009.02639.x CrossRefPubMedGoogle Scholar
  62. Saunders GW, Lehmkuhl VK (2005) Molecular divergence and morphological diversity among four cryptic species of Plocamium (Plocamiales, Florideophyceae) in northern Europe. Eur J Phycol 40:293–312. doi:10.1080/09670260500192935 CrossRefGoogle Scholar
  63. Saunders GW, McDevit DC (2012) Methods for DNA barcoding photosynthetic protists emphasizing the macroalgae and diatoms. In: Lopez I, Erickson DL (eds) DNA barcodes: methods and protocols, vol 858. Methods in Molecular Biology. Springer, pp 207–222. doi:10.1007/978-1-61779-591-6_10
  64. Saunders GW, McDevit DC (2013) DNA barcoding unmasks overlooked diversity improving knowledge on the composition and origins of the Churchill algal flora. BMC Ecol 13: 9. doi:10.1186/1472-6785-13-9
  65. Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423. doi:10.1002/j.1538-7305.1948.tb00917.x CrossRefGoogle Scholar
  66. Sherwood A, Kurihara A, Conklin K, Sauvage T, Presting G (2010a) The Hawaiian Rhodophyta biodiversity survey (2006–2010): a summary of principal findings. BMC Plant Biol 10: 258. doi:10.1186/1471-2229-10-258
  67. Sherwood AR, Sauvage T, Kurihara A, Conklin KY, Presting GG (2010b) A comparative analysis of COI, LSU and UPA marker data for the Hawaiian florideophyte Rhodophyta: implications for DNA barcoding of red algae. Cryptogam Algol 31:451–465Google Scholar
  68. Smale DA, Burrows MT, Moore P, O’Connor N, Hawkins SJ (2013) Threats and knowledge gaps for ecosystem services provided by kelp forests: a northeast Atlantic perspective. Ecol Evol 3:4016–4038. doi:10.1002/ece3.774 CrossRefPubMedCentralPubMedGoogle Scholar
  69. Spalding MD, Fox HE, Allen GR, Davidson N, Ferdaña ZA, Finlayson M, Halpern BS, Jorge MA, Lombana AL, Lourie SA (2007) Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. Bioscience 57:573–583. doi:10.1641/B570707 CrossRefGoogle Scholar
  70. Sutherland JE, Lindstrom SC, Nelson WA, Brodie J, Lynch MDJ, Hwang MS, Choi H-G, Miyata M, Kikuchi N, Oliveira MC, Farr T, Neefus C, Mols-Mortensen A, Milstein D, Müller KM (2011) A new look at an ancient order: generic revision of the Bangiales (Rhodophyta). J Phycol 47:1131–1151. doi:10.1111/j.1529-8817.2011.01052.x CrossRefGoogle Scholar
  71. Sweeney BW, Battle JM, Jackson JK, Dapkey T (2011) Can DNA barcodes of stream macroinvertebrates improve descriptions of community structure and water quality? J North Am Benthol Soc 30:195–216. doi:10.1899/10-016.1 CrossRefGoogle Scholar
  72. Taberlet P, Coissac E, Pompanon F, Brochmann C, Willersev E (2012) Towards next-generation biodiversity assessment using DNA metabarcoding. Mol Ecol 21:2045–2050. doi:10.1111/j.1365-294X.2012.05470.x CrossRefPubMedGoogle Scholar
  73. Tautz D, Arctander P, Minelli A, Thomas RH, Vogler AP (2003) A plea for DNA taxonomy. Trends Ecol Evol 18:70–74. doi:10.1016/S0169-5347(02)00041-1 CrossRefGoogle Scholar
  74. Tellier F, Meynard AP, Correa JA, Faugeron S, Valero M (2009) Phylogeographic analyses of the 30° S south-east Pacific biogeographic transition zone establish the occurrence of a sharp genetic discontinuity in the kelp Lessonia nigrescens: Vicariance or parapatry? Mol Phylogenet Evol 53:679–693. doi:10.1016/j.ympev.2009.07.030 CrossRefPubMedGoogle Scholar
  75. Valentini A, Pompanon F, Taberlet P (2009) DNA barcoding for ecologists. Trends Ecol Evol 24:110–117. doi:10.1016/j.tree.2008.09.011 CrossRefPubMedGoogle Scholar
  76. van der Strate HJ, Boele-Bos SA, Olsen JL, van de Zande L, Stam WT (2002) Phylogeographic studies in the tropical seaweed Cladophoropsis membranacea (Chlorophyta, Ulvophyceae) reveal a cryptic species complex. J Phycol 38:572–582. doi:10.1046/j.1529-8817.2002.01170.x CrossRefGoogle Scholar
  77. Verbruggen H (2014) Morphological complexity, plasticity, and species diagnosability in the application of old species names in DNA-based taxonomies. J Phycol 50:26–31. doi:10.1111/jpy.12155 CrossRefGoogle Scholar
  78. Waite IR, Herlihy AT, Larsen DP, Urquhart NS, Klemm DJ (2004) The effects of macroinvertebrate taxonomic resolution in large landscape bioassessments: an example from the Mid-Atlantic Highlands, USA. Freshw Biol 49:474–489. doi:10.1111/j.1365-2427.2004.01197.x CrossRefGoogle Scholar
  79. Walker RH, Brodie J, Russell S, Irvine LM, Orfanidis S (2009) Biodiversity of coralline algae in the Northeastern Atlantic including Corallina caespitosa sp. nov. (Corallinoideae, Rhodophyta). J Phycol 45:287–297. doi:10.1111/j.1529-8817.2008.00637.x CrossRefGoogle Scholar
  80. Wernberg T, Kendrick GA, Phillips JC (2003) Regional differences in kelp-associated algal assemblages on temperate limestone reefs in south-western Australia. Divers Distrib 9:427–441. doi:10.2307/3246711 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Marine Robuchon
    • 1
    • 2
  • Myriam Valero
    • 2
  • Delphine Gey
    • 3
  • Line Le Gall
    • 1
  1. 1.Institut de Systématique, Evolution, Biodiversité, UMR 7205 CNRS, EPHE, MNHN, UPMC, Equipe Exploration, Espèces, EvolutionMuséum National d’Histoire NaturelleCedex 05 ParisFrance
  2. 2.Evolutionary Biology and Ecology of Algae, UMI 3614 CNRS, UPMC Univ. Paris 06Sorbonne Universités, PUCCh, UACHRoscoffFrance
  3. 3.Outils et Méthodes de la Systématique Intégrative, UMS 2700 MNHN, CNRS, Service de Systématique MoléculaireMuséum National d’Histoire NaturelleCedex 05 ParisFrance

Personalised recommendations