, Volume 143, Issue 2, pp 241–252 | Cite as

Genomic overview of the phytopathogen Pectobacterium wasabiae strain RNS 08.42.1A suggests horizontal acquisition of quorum-sensing genes

  • Slimane Khayi
  • Yannick Raoul des Essarts
  • Angélique Quêtu-Laurent
  • Mohieddine Moumni
  • Valérie Hélias
  • Denis Faure


The blackleg and soft-rot diseases caused by pectinolytic enterobacteria such as Pectobacterium and Dickeya are major causes of losses affecting potato crop in the field and upon storage. In this work, we report the isolation, characterization and genome analysis of the Pectobacterium wasabiae (formely identified as Pectobacterium carotovorum subsp. carotovorum) strain RNS 08.42.1A, that has been isolated from a Solanum tuberosum host plant in France. Comparative genomics with 3 other P. wasabiae strains isolated from potato plants in different areas in North America and Europe, highlighted both a strong similarity at the whole genome level (ANI > 99 %) and a conserved synteny of the virulence genes. In addition, our analyses evidenced a robust separation between these four P. wasabiae strains and the type strain P. wasabiae CFBP 3304T, isolated from horseradish in Japan. In P. wasabiae RNS 08.42.1A, the expI and expR nucleotidic sequences are more related to those of some Pectobacterium atrosepticum and P. carotovorum strains (90 % of identity) than to those of the other potato P. wasabiae strains (70 to 74 % of identity). This could suggest a recruitment of these genes in the P. wasabiae strain RNS 08.42.1A by an horizontal transfer between pathogens infecting the same potato host plant.


P. wasabiae Soft-rot Blackleg Quorum-sensing T3SS Virulence 



This work was supported by a cooperative project between France and Morocco (PRAD 14-02, Campus France No. 30229 ZK), the excellence Grant (No. H011/007) awarded by the Ministry of Higher education of Morocco, and a collaborative project between Centre National de la Recherche Scientifique (CNRS, Gif sur Yvette) and Fédération Nationale des Producteurs de Plants de Pomme de Terre-Recherche Développement Promotion du Plants de Pomme de Terre (FN3PT-RD3PT, Paris).

Supplementary material

10709_2014_9793_MOESM1_ESM.xlsx (18 kb)
Supplementary material 1 (XLSX 18 kb)


  1. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M et al (2008) The RAST server: rapid annotations using subsystems technology. BMC Genomics 9:75. doi: 10.1186/1471-2164-9-75 CrossRefPubMedCentralPubMedGoogle Scholar
  2. Baghaee-Ravari S, Rahimian H, Shams-Bakhsh M, Lopez-Solanilla E, Antúnez-Lamas M, Rodríguez-Palenzuela P (2011) Characterization of Pectobacterium species from Iran using biochemical and molecular methods. Eur J Plant Pathol 129:413–425. doi: 10.1007/s10658-010-9704-z CrossRefGoogle Scholar
  3. Barras F, van Gijsegem F, Chatterjee AK (1994) Extracellular enzymes and pathogenesis of soft-rot Erwinia. Annu Rev Phytopathol 32:201–234. doi: 10.1146/ CrossRefGoogle Scholar
  4. Bell KS, Sebaihia M, Pritchard L, Holden MTG, Hyman LJ, Holeva MC, Thomson NR, Bentley SD, Churcher LJC, Mungall K et al (2004) Genome sequence of the enterobacterial phytopathogen Erwinia carotovora subsp. atroseptica and characterization of virulence factors. Proc Natl Acad Sci 101:11105–11110. doi: 10.1073/pnas.0402424101 CrossRefPubMedCentralPubMedGoogle Scholar
  5. Boughammoura A, Franza T, Dellagi A, Roux C, Matzanke-Markstein B, Expert D (2007) Ferritins, bacterial virulence and plant defence. Biometals 20:347–353. doi: 10.1007/s10534-006-9069-0 CrossRefPubMedGoogle Scholar
  6. Budde PP, Davis BM, Yuan J, Waldor MK (2007) Characterization of a higBA toxin–antitoxin locus in Vibrio cholerae. J Bacteriol 189:491–500. doi: 10.1128/JB.00909-06 CrossRefPubMedCentralPubMedGoogle Scholar
  7. Bukowski M, Rojowska A, Wladyka B (2011) Prokaryotic toxin–antitoxin systems—the role in bacterial physiology and application in molecular biology. Acta Biochim Pol 58:1–9PubMedGoogle Scholar
  8. Charkowski AO (2006) The soft rot Erwinia. In: Gnanamanickam S (ed) Plant-associated bacteria. Springer, Netherlands, pp 423–505 Google Scholar
  9. Corbett M, Virtue S, Bell K, Birch P, Burr T, Hyman L, Lilley K, Poock S, Toth I, Salmond G (2005) Identification of a new quorum-sensing-controlled virulence factor in Erwinia carotovora subsp. atroseptica secreted via the type II targeting pathway. Mol Plant Microbe Interact 18:334–342CrossRefPubMedGoogle Scholar
  10. Crépin A, Barbey C, Beury-Cirou A, Hélias V, Taupin L, Reverchon S, Nasser W, Faure D, Dufour A, Orange N et al (2012a) Quorum sensing signaling molecules produced by reference and emerging soft-rot bacteria (Dickeya and Pectobacterium spp.). PLoS ONE 7:e35176. doi: 10.1371/journal.pone.0035176 CrossRefPubMedCentralPubMedGoogle Scholar
  11. Crépin A, Barbey C, Cirou A, Tannières M, Orange N, Feuilloley M, Dessaux Y, Burini J-F, Faure D, Latour X (2012b) Biological control of pathogen communication in the rhizosphere: a novel approach applied to potato soft rot due to Pectobacterium atrosepticum. Plant Soil 358:27–37. doi: 10.1007/s11104-011-1030-5 CrossRefGoogle Scholar
  12. Crépin A, Beury-Cirou A, Barbey C, Farmer C, Hélias V, Burini J-F, Faure D, Latour X (2012c) N-Acyl homoserine lactones in diverse Pectobacterium and Dickeya plant pathogens: diversity, abundance, and involvement in virulence. Sensors 12:3484–3497. doi: 10.3390/s120303484 CrossRefPubMedCentralPubMedGoogle Scholar
  13. Czajkowski R, Pérombelon MCM, van Veen JA, van der Wolf JM (2011) Control of blackleg and tuber soft rot of potato caused by Pectobacterium and Dickeya species: a review: control of Dickeya and Pectobacterium species in potato. Plant Pathol 60:999–1013. doi: 10.1111/j.1365-3059.2011.02470.x CrossRefGoogle Scholar
  14. Darling ACE (2004) Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14:1394–1403. doi: 10.1101/gr.2289704 CrossRefPubMedCentralPubMedGoogle Scholar
  15. Darrasse A, Priou S, Kotoujansky A, Bertheau Y (1994) PCR and restriction fragment length polymorphism of a pel gene as a tool to identify Erwinia carotovora in relation to potato diseases. Appl Environ Microbiol 60:1437–1443PubMedCentralPubMedGoogle Scholar
  16. De Boer SH, Li X, Ward LJ (2012) Pectobacterium spp. associated with bacterial stem rot syndrome of potato in Canada. Phytopathology 102:937–947CrossRefPubMedGoogle Scholar
  17. De la Cruz MA, Zhao W, Farenc C, Gimenez G, Raoult D, Cambillau C, Gorvel J-P, Méresse S (2013) A toxin–antitoxin module of Salmonella promotes virulence in mice. PLoS Pathog 9:e1003827. doi: 10.1371/journal.ppat.1003827 CrossRefPubMedCentralPubMedGoogle Scholar
  18. Frechon D, Exbrayat P, Helias V, Hyman LJ, Jouan B, Llop P, Lopez MM, Payet N, Perombelon MCM, Toth IK (1998) Evaluation of a PCR kit for the detection of Erwinia carotovora subsp. atroseptica on potato tubers. Potato Res 41:163–173CrossRefGoogle Scholar
  19. Fuqua WC, Winans SC, Greenberg EP (1994) Quorum sensing in bacteria: the LuxR–LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 176:269–275PubMedCentralPubMedGoogle Scholar
  20. Gardan L, Gouy C, Richard C, Samson R (2003) Elevation of three subspecies of Pectobacterium carotovorum to species level: Pectobacterium atrosepticum sp. nov., Pectobacterium betavasculorum sp. nov. and Pectobacterium wasabiae sp. nov. Int J Syst Evol Microbiol 53:381–391. doi: 10.1099/ijs.0.02423-0 CrossRefPubMedGoogle Scholar
  21. Gerdes K, Christensen SK, Løbner-Olesen A (2005) Prokaryotic toxin–antitoxin stress response loci. Nat Rev Microbiol 3:371–382. doi: 10.1038/nrmicro1147 CrossRefPubMedGoogle Scholar
  22. Gogarten JP, Doolittle WF, Lawrence JG (2002) Prokaryotic evolution in light of gene transfer. Mol Biol Evol 19:2226–2238CrossRefPubMedGoogle Scholar
  23. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM (2007) DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57:81–91. doi: 10.1099/ijs.0.64483-0 CrossRefPubMedGoogle Scholar
  24. Goto M, Matsumoto K (1987) Erwinia carotovora subsp. wasabiae subsp. nov. Isolated from Diseased Rhizomes and Fibrous Roots of Japanese Horseradish (Eutrema wasabi Maxim.). Int J Syst Evol Microbiol 37(2):130–135. doi: 10.1099/00207713-37-2-130
  25. Gray KM, Garey JR (2001) The evolution of bacterial LuxI and LuxR quorum sensing regulators. Microbiology 147:2379–2387PubMedGoogle Scholar
  26. Hélias V, Hamon P, Huchet E, Wolf JVD, Andrivon D (2012) Two new effective semiselective crystal violet pectate media for isolation of Pectobacterium and Dickeya: isolating pectolytic bacteria on CVP. Plant Pathol 61:339–345. doi: 10.1111/j.1365-3059.2011.02508.x CrossRefGoogle Scholar
  27. Hugouvieux-Cotte-Pattat N, Condemine G, Nasser W, Reverchon S (1996) Regulation of pectinolysis in Erwinia chrysanthemi. Annu Rev Microbiol 50:213–257CrossRefPubMedGoogle Scholar
  28. Hurley JM, Woychik NA (2009) Bacterial toxin HigB associates with ribosomes and mediates translation-dependent mRNA cleavage at A-rich sites. J Biol Chem 284:18605–18613. doi: 10.1074/jbc.M109.008763 CrossRefPubMedCentralPubMedGoogle Scholar
  29. Jones S, Yu B, Bainton NA, Birdsall M, Bycroft BW, Chhabra SR, Cox AJ, Golby P, Reeves PJ, Stephens S et al (1993) The Lux autoinducer regulates the production of exoenzyme virulence determinants in Erwinia carotovora and Pseudomonas aeruginosa. EMBO J 12:2477PubMedCentralPubMedGoogle Scholar
  30. Kim H-S, Ma B, Perna NT, Charkowski AO (2009) Phylogeny and virulence of naturally occurring type III secretion system-deficient Pectobacterium strains. Appl Environ Microbiol 75:4539–4549. doi: 10.1128/AEM.01336-08 CrossRefPubMedCentralPubMedGoogle Scholar
  31. Kim MH, Cho MS, Kim BK, Choi HJ, Hahn JH, Kim C, Kang MJ, Kim SH, Park DS (2012) Quantitative real-time polymerase chain reaction assay for detection of Pectobacterium wasabiae using YD repeat protein gene-based primers. Plant Dis 96:253–257CrossRefGoogle Scholar
  32. Koskinen JP, Laine P, Niemi O, Nykyri J, Harjunpaa H, Auvinen P, Paulin L, Pirhonen M, Palva T, Holm L (2012) Genome sequence of Pectobacterium sp. strain SCC3193. J Bacteriol 194:6004. doi: 10.1128/JB.00681-12 CrossRefPubMedCentralPubMedGoogle Scholar
  33. Lang AS, Zhaxybayeva O, Beatty JT (2012) Gene transfer agents: phage-like elements of genetic exchange. Nat Rev Microbiol. doi: 10.1038/nrmicro2802 PubMedCentralPubMedGoogle Scholar
  34. Lerat E, Moran NA (2004) The evolutionary history of quorum-sensing systems in bacteria. Mol Biol Evol 21:903–913. doi: 10.1093/molbev/msh097 CrossRefPubMedGoogle Scholar
  35. Liu H, Coulthurst SJ, Pritchard L, Hedley PE, Ravensdale M, Humphris S, Burr T, Takle G, Brurberg M-B, Birch PRJ et al (2008) Quorum sensing coordinates rrute force and stealth modes of infection in the plant pathogen Pectobacterium atrosepticum. PLoS Pathog 4:e1000093. doi: 10.1371/journal.ppat.1000093 CrossRefPubMedCentralPubMedGoogle Scholar
  36. Ma B, Hibbing ME, Kim H-S, Reedy RM, Yedidia I, Breuer J, Breuer J, Glasner JD, Perna NT, Kelman A et al (2007) Host range and molecular phylogenies of the soft rot enterobacterial genera Pectobacterium and Dickeya. Phytopathology 97:1150–1163. doi: 10.1094/PHYTO-97-9-1150 CrossRefPubMedGoogle Scholar
  37. Magnuson RD (2007) Hypothetical functions of toxin-antitoxin systems. J Bacteriol 189:6089–6092. doi: 10.1128/JB.00958-07 CrossRefPubMedCentralPubMedGoogle Scholar
  38. Moleleki LN, Onkendi EM, Mongae A, Kubheka GC (2013) Characterisation of pectobacterium wasabiae causing blackleg and soft rot diseases in South Africa. Eur J Plant Pathol 135:279–288. doi: 10.1007/s10658-012-0084-4 CrossRefGoogle Scholar
  39. Nabhan S, Wydra K, Linde M, Debener T (2012) The use of two complementary DNA assays, AFLP and MLSA, for epidemic and phylogenetic studies of pectolytic enterobacterial strains with focus on the heterogeneous species Pectobacterium carotovorum: phylogenetic focus on soft-rot plant pathogens. Plant Pathol 61:498–508. doi: 10.1111/j.1365-3059.2011.02546.x CrossRefGoogle Scholar
  40. Nassar A, Darrasse A, Lemattre M, Kotoujansky A, Dervin C, Vedel R, Bertheau Y (1996) Characterization of Erwinia chrysanthemi by pectinolytic isozyme polymorphism and restriction fragment length polymorphism analysis of PCR-amplified fragments of pel genes. Appl Environ Microbiol 62:2228–2235PubMedCentralPubMedGoogle Scholar
  41. Nasser W, Bouillant ML, Salmond G, Reverchon S (1998) Characterization of the Erwinia chrysanthemi expIexpR locus directing the synthesis of two N-acyl-homoserine lactone signal molecules. Mol Microbiol 29:1391–1405. doi: 10.1046/j.1365-2958.1998.01022.x CrossRefPubMedGoogle Scholar
  42. Nasser W, Dorel C, Wawrzyniak J, Van Gijsegem F, Groleau M-C, Déziel E, Reverchon S (2013) Vfm a new quorum sensing system controls the virulence of Dickeya dadantii: new quorum sensing signal in Dickeya. Environ Microbiol 15:865–880. doi: 10.1111/1462-2920.12049 CrossRefPubMedGoogle Scholar
  43. Ngadze E, Brady CL, Coutinho TA, van der Waals JE (2012) Pectinolytic bacteria associated with potato soft rot and blackleg in South Africa and Zimbabwe. Eur J Plant Pathol 134:533–549. doi: 10.1007/s10658-012-0036-z CrossRefGoogle Scholar
  44. Nykyri J, Niemi O, Koskinen P, Nokso-Koivisto J, Pasanen M, Broberg M, Plyusnin I, Törönen P, Holm L, Pirhonen M et al (2012) Revised phylogeny and novel horizontally acquired virulence determinants of the model soft rot phytopathogen Pectobacterium wasabiae SCC3193. PLoS Pathog 8:e1003013. doi: 10.1371/journal.ppat.1003013 CrossRefPubMedCentralPubMedGoogle Scholar
  45. Pérombelon MCM (2002) Potato diseases caused by soft rot erwinias: an overview of pathogenesis. Plant Pathol 51:1–12CrossRefGoogle Scholar
  46. Pitman AR, Harrow SA, Visnovsky SB (2010) Genetic characterisation of Pectobacterium wasabiae causing soft rot disease of potato in New Zealand. Eur J Plant Pathol 126:423–435. doi: 10.1007/s10658-009-9551-y CrossRefGoogle Scholar
  47. Reeves PP, Wang L (2002) Genomic organization of LPS-specific loci. In: Hacker J, Kaper JB (eds) Pathogenicity islands and the evolution of pathogenic microbes. Springer, Berlin, Heidelberg, pp 109–135Google Scholar
  48. Samson R, Legendre JB, Richard C, Fischer-Le Saux M, Achouak W, Gardan L et al (2005) Transfer of Pectobacterium chrysanthemi (Burkholder, 1953) Brenner et al. 1973 and Brenneria paradisiaca to the genus Dickeya gen. nov. as Dickeya chrysanthemi comb. nov. and Dickeya paradisiaca comb. nov. and delineation of four novel species, Dickeya dadantii sp. nov., Dickeya dianthicola sp. nov., Dickeya dieffenbachiae sp. nov. and Dickeya zeae sp. nov. Int J Syst Evol Microbiol 55:1415–1427. doi: 10.1099/ijs.0.02791-0 CrossRefPubMedGoogle Scholar
  49. Schureck MA, Maehigashi T, Miles SJ, Marquez J, Cho SE, Erdman R, Dunham CM (2014) Structure of the Proteus vulgaris HigB-(HigA)2-HigB toxin-antitoxin complex. J Biol Chem 289:1060–1070. doi: 10.1074/jbc.M113.512095 CrossRefPubMedCentralPubMedGoogle Scholar
  50. Smadja B, Latour X, Trigui S, Burini JF, Chevalier S, Orange N (2004) Thermodependence of growth and enzymatic activities implicated in pathogenicity of two Erwinia carotovora subspecies (Pectobacterium spp.). Can J Microbiol 50:19–27. doi: 10.1139/w03-099 CrossRefPubMedGoogle Scholar
  51. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. doi: 10.1093/molbev/mst197 CrossRefPubMedCentralPubMedGoogle Scholar
  52. Toth IK, Bell KS, Holeva MC, Birch PR (2003) Soft rot erwiniae: from genes to genomes. Mol Plant Pathol 4:17–30CrossRefPubMedGoogle Scholar
  53. Toth IK, Pritchard L, Birch PR (2006) Comparative genomics reveals what makes an enterobacterial plant pathogen. Annu Rev Phytopathol 44:305–336CrossRefPubMedGoogle Scholar
  54. Waleron M, Waleron K, Podhajska AJ, Lojkowska E (2002) Genotyping of bacteria belonging to the former Erwinia genus by PCR-RFLP analysis of a recA gene fragment. Microbiology 148:583–595PubMedGoogle Scholar
  55. Waleron M, Waleron K, Lojkowska E (2013) Occurrence of Pectobacterium wasabiae in potato field samples. Eur J Plant Pathol 137:149–158. doi: 10.1007/s10658-013-0227-2 CrossRefGoogle Scholar
  56. Wen Y, Behiels E, Devreese B (2014) Toxin-Antitoxin systems: their role in persistence, biofilm formation, and pathogenicity. Pathog Dis 70:240–249. doi: 10.1111/2049-632X.12145 CrossRefPubMedGoogle Scholar
  57. Whitehead NA, Byers JT, Commander P, Corbett MJ, Coulthurst SJ, Everson L, Harris AKP, Pemberton CL, Simpson NJL, Slater H et al (2002) The regulation of virulence in phytopathogenic Erwinia species: quorum sensing, antibiotics and ecological considerations. Antonie Van Leeuwenhoek 81:223–231CrossRefPubMedGoogle Scholar
  58. Wilson K (1987) Preparation of genomic DNA from bacteria. In: Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (eds) Protocols in molecular biology. Greene Publishing and Wiley- Interscience, New York, pp 2.4.1–2.4.5Google Scholar
  59. Yamaguchi Y, Park J-H, Inouye M (2011) Toxin–antitoxin systems in bacteria and archaea. Annu Rev Genet 45:61–79. doi: 10.1146/annurev-genet-110410-132412 CrossRefPubMedGoogle Scholar
  60. Yuan K, Adam Z, Tambong J, Levesque CA, Chen W, Lewis CT, De Boer SH, Li X (2014) Draft Genome sequence of Pectobacterium wasabiae strain CFIA1002. Genome Announc 2:e00214–14. doi: 10.1128/genomeA.00214-14 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Slimane Khayi
    • 1
    • 2
  • Yannick Raoul des Essarts
    • 1
    • 3
  • Angélique Quêtu-Laurent
    • 3
    • 4
  • Mohieddine Moumni
    • 2
  • Valérie Hélias
    • 3
    • 4
  • Denis Faure
    • 1
  1. 1.Institut des Sciences du Végétal, UPR2355, Saclay Plant SciencesCentre National de la Recherche ScientifiqueGif-sur-YvetteFrance
  2. 2.Département de Biologie, Faculté des SciencesUniversité Moulay IsmaïlMeknesMorocco
  3. 3.Fédération Nationale des Producteurs de Plants de Pomme de Terre-Recherche Développement Promotion du Plant de Pomme de Terre (FN3PT-RD3PT)ParisFrance
  4. 4.UMR 1349 IGEPP INRA - Agrocampus Ouest RennesLeRheuFrance

Personalised recommendations