, Volume 142, Issue 4, pp 317–322 | Cite as

Distribution of 18S rDNA sites and absence of the canonical TTAGG insect telomeric repeat in parasitoid Hymenoptera

  • Vladimir E. Gokhman
  • Boris A. Anokhin
  • Valentina G. Kuznetsova


Karyotypes of six species belonging to three main clades of parasitoid Hymenoptera, the superfamilies Ichneumonoidea (Ichneumonidae: Ichneumon amphibolus), Cynipoidea (Cynipidae: Diplolepis rosae) and Chalcidoidea (Eurytomidae: Eurytoma robusta, Eu. serratulae and Eu. compressa, and Torymidae: Torymus bedeguaris) were studied using FISH with 18S rDNA and telomeric (TTAGG)n probes. Haploid karyotypes of D. rosae, Eu. robusta and Eu. serratulae carried the only 18S rDNA hybridization signal, whereas those of I. amphibolus and Eu. compressa carried three and two rDNA clusters respectively. In addition, three rDNA sites were visualized in the aneuploid female of T. bedeguaris. The number of rDNA clusters in parasitoid Hymenoptera generally correlates to the chromosome number. Apart from the overwhelming majority of the studied species of aculeate Hymenoptera, no hybridization signals were obtained from FISH with the telomeric (TTAGG)n probe in the examined parasitoid species. These data suggest absence of the canonical (TTAGG)n insect telomeric motif in the Ichneumonoidea, Cynipoidea and Chalcidoidea, and perhaps in parasitoid Hymenoptera in general.


18S rDNA Telomeres FISH Parasitoid Hymenoptera 



The present study was partly supported by the research Grant No. 14-04-01051 from the Russian Foundation for Basic Research (RFBR) and programs of the Presidium of the Russian Academy of Sciences “Gene Pools and Genetic Diversity” and “Origin of the Biosphere and Evolution of Geo-Biological Systems”. Dr. Robert B. Angus (School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, UK) has kindly checked the language of the manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Belle E, Beckage N, Rousselet J, Poirié M, Lemeunier M, Drezen J-M (2002) Visualization of polydnavirus sequences in a parasitoid wasp chromosome. J Virol 76:5793–5796PubMedCentralPubMedCrossRefGoogle Scholar
  2. Bolsheva NL, Gokhman VE, Muravenko OV, Gumovsky AV, Zelenin AV (2012) Comparative cytogenetic study on two species of the genus Entedon Dalman, 1820 (Hymenoptera: Eulophidae) using DNA-binding fluorochromes and molecular and immunofluorescent markers. Comp Cytogenet 6(1):79–92. doi: 10.3897/compcytogen.v6i1.2349 PubMedCentralPubMedCrossRefGoogle Scholar
  3. Cabrero J, Camacho JPM (2008) Location and expression of ribosomal RNA genes in grasshoppers: abundance of silent and cryptic loci. Chromosome Res 16:595–607. doi: 10.1007/s10577-008-1214-x PubMedCrossRefGoogle Scholar
  4. Carabajal Paladino L, Papeschi A, Lanzavecchia S, Cladera J, Bressa MJ (2013) Cytogenetic characterization of Diachasmimorpha longicaudata (Hymenoptera: Braconidae), a parasitoid wasp used as a biological control agent. Eur J Entomol 110(3):401–409. doi: 10.14411/eje.2013.054 CrossRefGoogle Scholar
  5. Chirino MG, Papeschi AG, Bressa MJ (2013) The significance of cytogenetics for the study of karyotype evolution and taxonomy of water bugs (Heteroptera, Belostomatidae) native to Argentina. Comp Cytogenet 7(2):111–129. doi: 10.3897/compcytogen.v7i2.4462 Google Scholar
  6. Frydrychová R, Marec F (2002) Repeated loss of TTAGG telomere repeats in evolution of beetles (Coleoptera). Genetica 115:179–187. doi: 10.1023/a:1020175912128 PubMedCrossRefGoogle Scholar
  7. Frydrychová R, Grossmann P, Trubač P, Vítková M, Marec F (2004) Phylogenetic distribution of TTAGG telomeric repeats in insects. Genome 47:163–178. doi: 10.1139/g03-100 PubMedCrossRefGoogle Scholar
  8. Gokhman VE (2009) Karyotypes of parasitic Hymenoptera. Springer Science + Business Media B.V., Dordrecht, xiii + 183 pp. doi: 10.1007/978-1-4020-9807-9
  9. Gokhman VE (2011) Morphotypes of chromosome sets and pathways of karyotype evolution of parasitic Hymenoptera. Russ Entomol J 20(3):265–271.
  10. Gokhman VE, Mikhailenko AP (2007) Chromosomes of Torymus bedeguaris (Linnaeus, 1758) and T. chloromerus (Walker, 1833) (Hymenoptera: Torymidae). Russ Entomol J 16(4):471–472Google Scholar
  11. Gokhman VE, Mikhailenko AP (2008) Karyotypic diversity in the subfamily Eurytominae (Hymenoptera: Eurytomidae). Folia biol (Kraków) 56(3–4):209–212. doi: 10.3409/fb.56_3-4.209-212 CrossRefGoogle Scholar
  12. Grozeva S, Kuznetsova VG, Anokhin BA (2011) Karyotypes, male meiosis and comparative FISH mapping of 18S ribosomal DNA and telomeric (TTAGG)n repeat in eight species of true bugs (Hemiptera, Heteroptera). Comp Cytogenet 5(4):335–374. doi: 10.3897/compcytogen.v5i4.2307 Google Scholar
  13. Heraty J (2009) Parasitoid biodiversity and insect pest management. Chapter 19. In: Foottit RG, Adler PH (eds) Insect biodiversity: science and society. Wiley-Blackwell, UK, pp 445–462. doi: 10.1002/9781444308211.ch19
  14. Heraty J, Ronquist F, Carpenter JM, Hawks D, Schulmeister S, Dowling AP, Murray D, Munro J, Wheeler WC, Schiff N, Sharkey M (2011) Evolution of the hymenopteran megaradiation. Mol Phylogenetics Evol 60:73–88. doi: 10.1016/j.ympev.2011.04.003 CrossRefGoogle Scholar
  15. Heraty JM, Burks RA, Cruaud A, Gibson GAP, Liljeblad J, Munro J, Rasplus J-Y, Delvare G, Janšta P, Gumovsky A, Huber J, Woolley JB, Krogmann L, Heydon S, Polaszek A, Schmidt S, Darling DC, Gates MV, Mottern J, Murray E, Molin AD, Triapitsyn S, Baur H, Pinto JD, van Noort C, George J, Yoder M (2013) A phylogenetic analysis of the megadiverse Chalcidoidea (Hymenoptera). Cladistics 29:466–542. doi: 10.1111/cla.12006 CrossRefGoogle Scholar
  16. Hirai H, Yamamoto MT, Ogura K, Satta Y, Yamada M, Taylor RW, Imai HT (1994) Multiplication of 28S rDNA and NOR activity in chromosome evolution among ants of the Myrmecia pilosula species complex. Chromosoma 103(3):171–178. doi: 10.1007/bf00368009 PubMedCrossRefGoogle Scholar
  17. Imai HT, Taylor RW, Crosland MWJ, Crozier RH (1988) Modes of spontaneous chromosomal mutation and karyotype evolution in ants with reference to the minimum interaction hypothesis. Jpn J Genet 63:159–185PubMedCrossRefGoogle Scholar
  18. Kuznetsova VG, Grozeva SM, Anokhin BA (2012) The first finding of (TTAGG)n telomeric repeat in chromosomes of true bugs (Heteroptera, Belostomatidae). Comp Cytogenet 6(4):341–346. doi: 10.3897/compcytogen.v6i4.4058 PubMedCentralPubMedCrossRefGoogle Scholar
  19. Lorite P, Carillo JA, Palomeque T (2002) Conservation of (TTAGG)n telomeric sequences among ants (Hymenoptera, Formicidae). J Hered 93(4):282–285PubMedCrossRefGoogle Scholar
  20. Lukhtanov VA, Kuznetsova VG (2010) What genes and chromosomes say about the origin and evolution of insects and other arthropods. Russ J Genet 46:1115–1121. doi: 10.1134/s1022795410090279 CrossRefGoogle Scholar
  21. Maryańska-Nadachowska A, Kuznetsova VG, Karamysheva TV (2013) Chromosomal location of rDNA clusters and TTAGG telomeric repeats in eight species of the spittlebug genus Philaenus (Hemiptera: Auchenorrhyncha: Aphrophoridae). Eur J Entomol 110(3):411–418. doi: 10.14411/eje.2013.055 CrossRefGoogle Scholar
  22. Menezes RST, Silva TM, Carvalho AT, Andrade-Souza V, Silva JG, Costa MA (2013) Numerical and structural chromosome variation in the swarm-founding wasp Metapolybia decorata Gribodo 1896 (Hymenoptera, Vespidae). Genetica 141(7–9):273–280. doi: 10.1007/s10709-013-9726-5 PubMedCrossRefGoogle Scholar
  23. Meyne J, Hirai H, Imai HT (1995) FISH analysis of the telomere sequences of bulldog ants (Myrmecia: Formicidae). Chromosoma 104(1):14–18. doi: 10.1007/bf00352221 PubMedGoogle Scholar
  24. Quicke DLJ (1997) Parasitic wasps. Chapman and Hall, LondonGoogle Scholar
  25. Rasnitsyn AP (1980) Origin and evolution of hymenopterous insects. Trudy Paleontologicheskogo Instituta AN SSSR 174. Nauka, Moscow (in Russian)Google Scholar
  26. Schwarzacher T, Heslop-Harrison P (2000) Practical in situ hybridization. BIOS Scientific Publishers Ltd, Oxford, xii + 203 ppGoogle Scholar
  27. Sharkey MJ (2007) Phylogeny and classification of Hymenoptera. Zootaxa 1668:521–548.
  28. Stille B, Dävring L (1980) Meiosis and reproductive strategy in the parthenogenetic gall wasp Diplolepis rosae (L.) (Hymenoptera, Cynipidae). Hereditas 92:353–362CrossRefGoogle Scholar
  29. The Nasonia Genome Working Group (2010) Functional and evolutionary insights from the genomes of three parasitoid Nasonia species. Science 327(5963):343–348. Supporting online material. Accessed 28 Apr 2014
  30. Van Vugt JJFA, de Nooijer S, Stouthamer R, de Jong H (2005) NOR activity and repeat sequences of the paternal sex ratio chromosome of the parasitoid wasp Trichogramma kaykai. Chromosoma 114:410–419. doi: 10.1007/s00412-005-0026-4 PubMedCrossRefGoogle Scholar
  31. Van Vugt JJFA, de Jong H, Stouthamer R (2009) The origin of a selfish B chromosome triggering paternal sex ratio in the parasitoid wasp Trichogramma kaykai. Proc R Soc B 276:4149–4154. doi: 10.1098/rspb.2009.1238 PubMedCentralPubMedCrossRefGoogle Scholar
  32. Vítková M, Král J, Traut W, Zrzavý J, Marec F (2005) The evolutionary origin of insect telomeric repeats, (TTAGG)n. Chromosome Res 13:145–156. doi: 10.1007/s10577-005-7721-0 PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Vladimir E. Gokhman
    • 1
  • Boris A. Anokhin
    • 2
  • Valentina G. Kuznetsova
    • 2
  1. 1.Botanical GardenMoscow State UniversityMoscowRussia
  2. 2.Zoological InstituteRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations