, Volume 142, Issue 1, pp 87–98 | Cite as

Burst speciation processes and genomic expansion in the neotropical annual killifish genus Austrolebias (Cyprinodontiformes, Rivulidae)

  • G. GarcíaEmail author
  • V. Gutiérrez
  • N. Ríos
  • B. Turner
  • F. Santiñaque
  • B. López-Carro
  • G. Folle


The extent to which genome sizes and other nucleotypic factors influence the phyletic diversification of lineages has long been discussed but remains largely unresolved. In the present work, we present evidence that the genomes of at least 16 species of the neotropical rivulid killifish genus Austrolebias are unusually large, with an average DNA content of about 5.95 ± 0.45 picograms per diploid cell (mean C-value of about 2.98 pg). They are thus larger than the genomes of very nearly all other diploid, i.e. non-(paleo) polyploid species of actinopterygian fishes so far reported. Austrolebias species appear to be conventional diploids in all other respects and there is no reason to believe that they arise from polyploid ancestors. The genome sizes reported for other rivulid killifishes, including a putative sister group, are considerably smaller and fall within the range typical of most other cyprinodontoid species. Therefore, it appears that the ancestor(s) of contemporary Austrolebias have undergone one or more episodes of genome expansion encompassing sudden speciation process during the Pleistocene. In addition, these findings are consistent with the hypothesis of a positive correlation between species richness and genome size.


Burst speciation Genomic expansion Annual killifish 



We thank the following colleagues for kindly providing the following fish specimens: L. Malabarba (A. adloffi) and W.J.E.M. Costa (C. melanotaenia) from RS Brazil (1991 and 1997, respectively); V. Etzel and G. Hessfeld (A. vandenbergi, A. patriciae) from Paraguay (2004); P. Calviño (A. bellottii, A. nigripinnis, A. monstrosus, A. elongatus, A. nonoiuliensis, A. robustus, A. juanlangi, A. periodicus) from Chaco, Salta and Buenos Aires Provinces as well as from aquarium strains; M. Loureiro, S. Serra and A. Duarte (A. quirogay, A. elongatus, A. reicherti, A. vazferreirai, A. nigripinnis, A. cinereus) from different ponds of Uruguay and D. Rodriguez-Ithurralde and N. Papa for zebrafish (Danio rerio) donation. The authors are also grateful to the Japanese government for the donation of equipment. G.G., V.G., and G.F. acknowledge the support of SNI (ANII, Uruguay).

Supplementary material

10709_2014_9756_MOESM1_ESM.doc (98 kb)
Supplementary material 1 (DOC 98 kb)
10709_2014_9756_MOESM2_ESM.doc (114 kb)
Supplementary material 2 (DOC 114 kb)


  1. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control AC-19:716–723CrossRefGoogle Scholar
  2. Arezo MJ, Pereiro L, Berois N (2005) Early development in the annual fish Cynolebias viarius. J Fish Biol 66:1357–1370. doi: 10.1111/j.0022-1112.2005.00688.x CrossRefGoogle Scholar
  3. Arim M, Abades SR, Laufer G, Loureiro M, Marquet PA (2010) Food web structure and body size: trophic position and resource acquisition. Oikos 119:147–153. doi: 10.1111/j.1600-0706.2009.17768.x CrossRefGoogle Scholar
  4. Avise JC (1994) Molecular markers, natural history and evolution. Chapman & Hall, New YorkCrossRefGoogle Scholar
  5. Belote DF, Costa WJEM (2002) Reproductive behavior patterns in the neotropical annual fish genus Simpsonichthys Carvalho, 1959 (Cyprinodontiformes, Rivulidae): description and phylogenetic implications. Bol Mus Nac (Rio de J.) 489:1–10Google Scholar
  6. Belote DF, Costa WJEM (2003) Reproductive behavior of the Brazilian annual fish Cynolebias albipunctatus Costa & Brasil, 1991 (Teleostei, Cyprinodontiformes, Rivulidae): a new report of sound production in fishes. Arq Mus Nac (Rio de J.) 61:241–244Google Scholar
  7. Belote DF, Costa WJEM (2004) Reproductive behavior patterns in three species of the South American annual fish genus Austrolebias Costa, 1998 (Cyprinodontiformes, Rivulidae). Bol Mus Nac (Rio de J.) 514:1–7Google Scholar
  8. Berois N, Arezo MJ, Papa NG, Clivio GA (2012) Annual fish: development adaptations for an extreme environment. Wiley Interdiscip Rev Dev Biol 1:595–602. doi: 10.1002/wdev.39 PubMedCrossRefGoogle Scholar
  9. Brown WM, George M Jr, Wilson AC (1979) Rapid evolution of animal mitochondrial DNA. Proc Natl Acad Sci USA 76:1967–1971. doi: 10.1073/pnas.76.4 PubMedCrossRefGoogle Scholar
  10. Cardozo V (1999) Tasa Metabólica y excreción del nitrógeno en peces anuales Cynolebias viarius (Cyprinodontiformes). MSc. Dissertation. Thesis. PEDECIBA, Facultad de Ciencias, UDELAR, UruguayGoogle Scholar
  11. Carvalho ML, Oliveira C, Foresti F (1998) Nuclear DNA content of thirty species of Neotropical fishes. Genet Mol Biol 21:47–54CrossRefGoogle Scholar
  12. Ciudad J, Cid E, Velasco A, Lara JM, Aijón J, Orfao A (2002) Flow cytometry measurement of the DNA contents of G0/G1 diploid cells from three different teleost fish species. Cytometry 48:20–25. doi: 10.1002/cyto.10100 PubMedCrossRefGoogle Scholar
  13. Costa WJEM (1998) Phylogeny and classification of Rivulidae revisited: origin and evolution of annualism and miniaturization in rivulid fishes (Cyprinodontiformes: Aplocheiloidei). J Comp Biol 3:33–94Google Scholar
  14. Costa WJEM (2006) The South American annual killifish genus Austrolebias (Teleostei: Cyprinodontiformes: Rivulidae): phylogenetic relationships, descriptive morphology and taxonomic revision. Zootaxa 1213:1–162Google Scholar
  15. Denton TE (1973) Fish chromosome methodology. CE Thomas Springfield, IllinoisGoogle Scholar
  16. Drummond AJ, Rambaut A (2007) Bayesian evolutionary analysis by sampling trees BEAST. BMC Evol Biol 7:214. doi: 10.1186/1471-2148-7-214 PubMedCentralPubMedCrossRefGoogle Scholar
  17. Elder JF, Turner BJ, Thomerson JE, Taphorn DC (1993) Karyotypes of nine Venezuelan annual killifishes (Cyprinodontidae), with comments on karyotype differentiation in annual killifishes. Ichthyol Explor Freshw 4:261–268Google Scholar
  18. Errea A, Danulat E (2001) Growth of the annual fish Cynolebias viarius (Cyprinodontiformes), in the natural habitat compared to laboratory conditions. Environ Biol Fishes 61:261–268CrossRefGoogle Scholar
  19. Fernández AS, Rosillo JC, Casanova G, Olivera-Bravo S (2011) Proliferation zones in the brain of adult fish Austrolebias (Cyprinodontiformes: Rivulidae): a comparative study. Neuroscience 189:12–24PubMedCrossRefGoogle Scholar
  20. Ferrer J, Malabarba LR, Costa WJEM (2008) Austrolebias paucisquama (Cyprinodontiformes: Rivulidae), a new species of annual killifish from southern Brazil. Neotrop Ichthyol 6:175–180CrossRefGoogle Scholar
  21. García G (2006) Multiple simultaneous speciation in killifishes of the Cynolebias adloffi species complex (Cyprinodontiformes, Rivulidae) from phylogeography and chromosome data. J Zool Syst Evol Res 44:75–87. doi: 10.1111/j.1439-0469.2005.00346.x CrossRefGoogle Scholar
  22. García G, Scvortzoff E, Máspoli MC, Vaz-ferreira R (1993) Analysis of karyotypic evolution in natural populations of Cynolebias (Pisces, Cyprinodontiformes, Rivulidae) using banding techniques. Cytologia 58:85–94CrossRefGoogle Scholar
  23. García G, Scvortzoff E, Hernández A (1995) Karyotypic heterogeneity in South American annual killifishes of the genus Cynolebias (Pisces, Cyprinodontiformes, Rivulidae). Cytologia 60:103–110CrossRefGoogle Scholar
  24. García G, Wlasiuk G, Lessa EP (2000) High levels of mitochondrial cytochrome b divergence in the annual killifishes of the genus Cynolebias (Cyprinodontiformes, Rivulidae). Zool J Linn Soc 129:93–110CrossRefGoogle Scholar
  25. García G, Lalanne AI, Aguirre G, Cappetta M (2001) Chromosome evolution in annual killifish genus Cynolebias and mitochondrial phylogenetic analysis. Chromosome Res 9:93–100CrossRefGoogle Scholar
  26. García G, Alvarez-Valin F, Gómez N (2002) Mitochondrial genes: signals and noise in phylogenetic reconstruction within killifish genus Cynolebias (Cyprinodontiformes, Rivulidae). Biol J Linn Soc Lond 76:49–59Google Scholar
  27. García D, Loureiro M, Tassino B (2008) Reproductive behavior in the fish Austrolebias reicherti Loureiro & García 2004 (Cyprinodontiformes: Rivulidae). Neotrop Ichthyol 6:243–248CrossRefGoogle Scholar
  28. García G, Loureiro M, Berois N, Arezo MJ, Casanova G, Olivera A (2009) Pattern of differentiation in the annual killifish genus Austrolebias (Cyprinodontiformes: Rivulidae) from a biosphere reserve site in South America: a multidisciplinary approach. Biol J Linn Soc Lond 98:620–635CrossRefGoogle Scholar
  29. García G, Gutiérrez V, Vergara J, Calviño P, Duarte A, Loureiro M (2012) Patterns of population differentiation in annual killifishes from the Paraná–Uruguay–La Plata Basin: the role of vicariance and dispersal. J Biogeogr 39:1707–1719. doi: 10.1111/j.1365-2699.2012.02722.x CrossRefGoogle Scholar
  30. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321. doi: 10.1093/sysbio/syq010 PubMedCrossRefGoogle Scholar
  31. Gutiérrez V, Arezo MJ, García G (2007) Characterization of partial Hox genes sequences in annual fishes of the Cynolebiatinae subfamily (Cyprinodontiformes: Rivulidae). Gen Mol Biol 30:494–503CrossRefGoogle Scholar
  32. Hillis DM, Bull JJ (1993) An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst Biol 42:182–192. doi: 10.2307/2992540 Google Scholar
  33. Hinegardner R, Rosen DE (1972) Cellular DNA content and evolution of teleostean fishes. Am Nat 106:621–644CrossRefGoogle Scholar
  34. Kimura MA (1980) Simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120PubMedCrossRefGoogle Scholar
  35. Kligerman AD, Bloom SE (1977) Rapid chromosome preparations from solid tissues of fishes. J Fish Res Board Can 34:266–269CrossRefGoogle Scholar
  36. Kornfield IL (1984) Descriptive genetics of cichlid fishes. In: Turner BJ (ed) Evolutionary genetics of fishes. Plenum Press, New York, pp 591–616CrossRefGoogle Scholar
  37. Kraaijeveld K (2010) Genome size and species diversification. Evol Biol 37:227–233. doi: 10.1007/s11692-010-9093-4 PubMedCentralPubMedCrossRefGoogle Scholar
  38. Lamatsch DK, Steinlein C, Schmid M, Schartl M (2000) Non-invasive determination of genome size and ploidy level in fishes by flow cytometry: detection of triploid Poecillia Formosa. Cytometry 39:91–95PubMedCrossRefGoogle Scholar
  39. Loureiro M, de Sá RO (1996) External morphology of the chorion of the annual fishes Cynolebias (Cyprinodontiformes: Rivulidae). Copeia 1996:1016–1022CrossRefGoogle Scholar
  40. Loureiro M, de Sá RO (1998) Osteological analysis of the killifish genus Cynolebias (Cyprinodontiformes: Rivulidae). J Morphol 238:109–262CrossRefGoogle Scholar
  41. Loureiro M, García G (2004) Cynolebias reicherti a new annual fish (Rivulidae: Cynolebiatinae) from southern Laguna Merim basin. Acta Zool Lilloana 48:13–25Google Scholar
  42. Loureiro M, Duarte A, Zarucki M (2011) A new species of Austrolebias Costa (Cyprinodontiformes: Rivulidae) from northeastern Uruguay, with comments on distribution patterns. Neotrop Ichthyol 9:335–342Google Scholar
  43. Mabble BK, Alexandrou MA, Taylor MI (2011) Genome duplication in amphibians and fish: an extended synthesis. J Zool 284:151–182. doi: 10.1111/j.1469-7998.2011.00829.x Google Scholar
  44. Mank JE, Avise JC (2006) Cladogenetic correlates of genomic expansions in the recent evolution of actinopterygiian fishes. Proc R Soc B 273:33–38. doi: 10.1098/rspb 2005.3295PubMedCrossRefGoogle Scholar
  45. Máspoli MC, García G (1988) Estudio comparativo del cariotipo de especies del género Cynolebias Steindachner, 1876 (Cyprinodontiformes, Rivulidae). Bol Soc Zool Uruguay 4:27–33Google Scholar
  46. Medrano JF, Aasen E, Sharrow L (1990) DNA extraction from nucleated red blood cells. Biotechniques 8:43PubMedGoogle Scholar
  47. Moshgani M, Van Dooren TJM (2011) Maternal and paternal contributions to egg size and egg number variation in the blackfin pearl killifish Austrolebias nigripinnis. Evol Ecol 25:1179–1195CrossRefGoogle Scholar
  48. Ojima Y, Yamamoto K (1990) Cellular DNA contents of fishes determined by flow cytometry. La Kromosomo II 57:1871–1888Google Scholar
  49. Palumbi S, Martin A, Romano S, McMillan WO, Stice L, Grabowski G (1991) The simple fool’s guide to PCR. Department of Zoology and Kewalo Marine Laboratory, Univ. Hawaii, HonoluluGoogle Scholar
  50. Passos C, Tassino B, Loureiro M, Rosenthal GG (2013) Intra- and intersexual selection on male body size in the annual killifish Austrolebias charrua. Behav Process 96:20–26.Google Scholar
  51. Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818. doi: 10.1093/bioinformatics/14.9.817 PubMedCrossRefGoogle Scholar
  52. Rambaut A, Drummond AJ (2009) Tracer v.1.5.
  53. Rebollo R, Horard B, Hubert B, Vieira C (2010) Jumping genes and epigenetics: towards new species. Gene 454:1–7. doi: 10.1016/j.gene.2010.01.003 PubMedCrossRefGoogle Scholar
  54. Reichwald K, Lauber C, Nanda I, Kirschner J, Hartmann N, Schories S, Gausmann U, Taudien S, Schilhabel MB, Szafranski K et al (2009) High tandem repeat content in the genome of the short-lived annual fish Nothobranchius furzeri: a new vertebrate model for aging research. Genome Biol 10:R16.1–R16.17. doi: 10.1186/gb-2009-10-2-r16 CrossRefGoogle Scholar
  55. Rodríguez F, Oliver JL, Marín A, Medina JR (1990) The general stochastic model of nucleotide substitution. J Theor Biol 142:482–501CrossRefGoogle Scholar
  56. Scheel JJ (1972) Rivuline karyotypes and their evolution (Rivulinae, Cyprinodontidae, Pisces). Z Zool Syst Evol Forsch 10:180–209CrossRefGoogle Scholar
  57. Simpson BRC (1979) The phenology of annual killifishes. Symp Zool Soc Lond 44:243–261Google Scholar
  58. Smith EM, Gregory TR (2009) Patterns of genome size diversity in the ray-finned fishes. Hydriobiologia 625:1–25CrossRefGoogle Scholar
  59. Swofford DL (2002) PAUP* Phylogenetic Analysis Using Parsimony (*and Other Methods) ver. 4.0b5. Sinauer Associates, MAGoogle Scholar
  60. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739. doi: 10.1093/molbev/msr121 PubMedCrossRefGoogle Scholar
  61. Thompson JD, Gibson TJ, Plewniak FM, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876PubMedCentralPubMedCrossRefGoogle Scholar
  62. Vaz-Ferreira R, Sierra B, Scaglia S (1964) Eco-etología de la reproducción en los peces del género Cynolebias Steindachner, 1876. Apar Arch Soc Biol Montev 26:44–49Google Scholar
  63. Vinogradov AE (1998) Genome size and GC-percent in vertebrates as determined by flow cytometry: the triangular relationship. Cytometry 31:100–109PubMedCrossRefGoogle Scholar
  64. Walford RL, Liu BH (1965) Husbandry, life span, and growth rate of the annual fish, Cynolebias adloffi. Exp Gerontol 1:161–171CrossRefGoogle Scholar
  65. Wourms JP (1972) The developmental biology of annual fishes. II. Naturally occurring dispersion and reaggregation of blastomeres during the development of annual fish eggs. J Exp Zool 182:169–200PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • G. García
    • 1
    Email author
  • V. Gutiérrez
    • 1
  • N. Ríos
    • 1
  • B. Turner
    • 2
  • F. Santiñaque
    • 3
  • B. López-Carro
    • 3
  • G. Folle
    • 3
  1. 1.Sección Genética Evolutiva, Facultad de CienciasUdelaRMontevideoUruguay
  2. 2.Department of Biological SciencesVirginia TechBlacksburgUSA
  3. 3.Servicio de Citometría de Flujo y Clasificación Celular (SECIF)Instituto de Investigaciones Biológicas Clemente EstableMontevideoUruguay

Personalised recommendations